Product Description
Product Description
Everyone is very concerned about the development trend of the water well drilling machine Drilling operation is an important process in the process of taking the water. Generally common types include rotary rigs, shock drills, and composite rigs. They have certain requirements for different geological characteristics, so they have certain requirements for the drill drill motivation.
A variety of screw air compressors just solve this problem. With strong motivation, the well drilling rigns can calmly cope with various complex geology, bringing users a highly efficient and economical experience.
Product feature
,More powerful and energy-saving new air compressor engine
Two stage compressor head, Higher efficiency, more energy saving; Heavy duty and high strength design,Direct linking to drive, Quality assurance, stable and reliable; Optimal air compressor structure and reliability.
,High quality heavy-duty diesel engine
High efficiency fuel system combining electro-injection and high pressure ; Supporting Cummins, CHINAMFG and other heavy duty diesel engines;Intelligent control system accurately controls the injection quantity, to achieve the best power output within the full operating range, Stronger power, higher reliability, Better fuel economy, meeting National stage III requirements.
Intelligent control system
In operation, only one button can be used to switch 2 operating conditions, 1 machine is equivalent to 2 different ones. intuitive interface, multi-language intelligent controller,simple operation, Real-time online displaying speed, air supply pressure, oil pressure, exhaust temperature, coolant temperature, fuel level and other operating parameters; with self-diagnosis fault, alarm and shutdown protection function to ensure the safety of unattended operation,Optional remote monitoring system and mobile APP function.
,High -efficiency cooling system
High -efficiency and reliable system configuration to ensure the whole machine is in the best operating state;
Independent oil, gas, liquid cooler, high diameter high -efficiency fan, smooth air passage;Adapt to the climate of the severe cold, cool summer, and plateau.
large capacity heavy load air filtration system and oil and gas separation system.
Whirlwind high -quality heavy load main filtration, dual filtration, filtering off the dust and other debris particles in the air, ensuring the minimum loss of diesel and air compressor hosts in bad operating conditions, extending the life of the machine;
Adapt to the dedicated efficient oil and gas separation systems that have changed the operating conditions such as drilling machines and well diamonds to ensure that the air quality of the air and gas after the separation of oil and gas under various types of working conditions meets the requirements of 3PPM, and extend the cycle of the use of oil core.
,High -quality and reliable air compressor coolant and lubrication system.
Under low temperature and high temperature environment, the stability of the liquid chemical ingredients and physical characteristics of the cooling and high temperature environment is good, and the coordinates are not deteriorated. Multi -oil filter design and constant temperature control can ensure the minimum loss under bad working conditions and extend the life of the machine.
,Rich customized options
Optional 2 -industrial air compressor host and control system to meet the efficient construction of various operations;
The optional low -temperature starting system, the fuel coolant heater makes the temperature of the diesel engine coolant, lubricating oil, and the temperature of the whole machine continuously improved to ensure the start of the diesel engine in severe cold and plateau environment;
Optional cooler to ensure that the exhaust temperature is not higher than the ambient temperature by 15 ° C;
Optional air pre -filter to ensure that diesel and air compressors are far from early wear in the high dust environment;
The optional remote monitoring system and mobile phone APP function, the management of the device becomes easy.
High efficiency and easier maintenance.
A variety of innovative designs can effectively reduce the cost and greatly improve work efficiency, Increase investment return; Silent hood and fully closed chassis shock absorption and silenced design, running smoothly, lower noise;
The spacious full open door panel, the reasonable structure layout, which makes the maintenance air filter, oil filter, and oil cores very easy to run;
The peripheral layout of the components that needs to be maintained and maintenance is reasonable, the tentacles are available, and the pipeline cables are clear and onvenient to shorten the time and costs of the maintenance.
Product specifications series parameters
| High wind pressure series | HGT24-22Y | HGT31-25C | |
| UNIT | Enginedisplacement m3/min |
17/15 | 17/15 |
| Rated discharge pressure bar(e) | 12/15 | 13/17 | |
| Air compressor oil capacityL | 56 | 56 | |
| Air storage tank capacityL | 127 | 127 | |
| Fuel capacityL | 220 | 220 | |
| Noise level dB(A) | 79±3 | 79±3 | |
| Max tempreture°C | |||
| Engine manufacturers | Yuchai | CUMMINS | |
| Model | YC6L300 | QSL8.9-C400 | |
| UNIT | Number of cylinder | ||
| Rated power input KW | 221 | 295 | |
| Full load engine speed rpm | 1950 | 1950 | |
| Engine no-load speed rpm | 1300 | 1300 | |
| Lubricating oil capacity | 18 | 21 | |
| Coolant capacity | 34 | 60 | |
| Engine battery cell | 6-QW-165MFX2 | 6-QW-165MFX2 | |
| Emission standard | National | National | |
| Dimension | |||
| Trailer type (length, width and height) mm | 3700X1870X2300 | 3600X1960X2450 | |
| Total weight kg | 4200 | 5500 | |
| Outlet exhaust valve | 1XG2″+1XGI” | 1XG2″+1XGI” | |
| High wind pressure series | HGT31-25Y | HGT32-25Y | |
| UNIT | Enginedisplacement m3/min |
31/242 | 320/252 |
| Rated discharge pressure bar(e) | 20/252 | 20/252 | |
| Compression Grade | GRADE 2 | GRADE 2 | |
| Air compressor oil capacityL | 195 | 195 | |
| Air storage tank capacityL | 95 | 105 | |
| Fuel capacityL | 450 | 500 | |
| Noise level dB(A) | 102±3 | 102±3 | |
| Max tempreture°C | 50 | 50 | |
| Engine manufacturers | Yuchai | Yuchai | |
| Model | YC6MK400 | YC6MK400 | |
| UNIT | Number of cylinder | ||
| Rated power input KW | 295 | 295 | |
| Full load engine speed rpm | 1900 | 1900 | |
| Engine no-load speed rpm | 1300 | 1300 | |
| Lubricating oil capacity | 30 | 30 | |
| Coolant capacity | 65 | 65 | |
| Engine battery cell | 6-QW-165MFX2 | 6-QW-210MFX2 | |
| Emission standard | National | National | |
| Dimension | |||
| Trailer type (length, width and height) mm | 3600X1960X2450 | 3900X1960X2520 | |
| Total weight kg | 5700 | 5800 | |
| Outlet exhaust valve | 1XG2″+1XGI” | 1XG2″+1XGI” | |
| High wind pressure series | HGT36-30C | HGT40-25C | |
| UNIT | Enginedisplacement m3/min |
36/302 | 40/36 |
| Rated discharge pressure bar(e) | 25/302 | 200/252 | |
| Compression Grade | |||
| Air compressor oil capacityL | 240 | 240 | |
| Air storage tank capacityL | 125 | 125 | |
| Fuel capacityL | 550 | 550 | |
| Noise level dB(A) | 105±3 | 105±3 | |
| Max tempreture°C | 50 | 50 | |
| Engine manufacturers | CUMMINS | CUMMINS | |
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Online |
|---|---|
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
Can air compressors be used for gas compression and storage?
Yes, air compressors can be used for gas compression and storage. While air compressors are commonly used to compress and store air, they can also be utilized for compressing and storing other gases, depending on the specific application requirements. Here’s how air compressors can be used for gas compression and storage:
Gas Compression:
Air compressors can compress various gases by utilizing the same principles applied to compressing air. The compressor takes in the gas at a certain pressure, and through the compression process, it increases the pressure and reduces the volume of the gas. This compressed gas can then be used for different purposes, such as in industrial processes, gas pipelines, or storage systems.
Gas Storage:
Air compressors can also be used for gas storage by compressing the gas into storage vessels or tanks. The compressed gas is stored at high pressure within these vessels until it is needed for use. Gas storage is commonly employed in industries where a continuous and reliable supply of gas is required, such as in natural gas storage facilities or for storing compressed natural gas (CNG) used as a fuel for vehicles.
Gas Types:
While air compressors are primarily designed for compressing air, they can be adapted to handle various gases, including but not limited to:
- Nitrogen
- Oxygen
- Hydrogen
- Carbon dioxide
- Natural gas
- Refrigerant gases
It’s important to note that when using air compressors for gas compression and storage, certain considerations must be taken into account. These include compatibility of the compressor materials with the specific gas being compressed, ensuring proper sealing to prevent gas leaks, and adhering to safety regulations and guidelines for handling and storing compressed gases.
By leveraging the capabilities of air compressors, it is possible to compress and store gases efficiently, providing a reliable supply for various industrial, commercial, and residential applications.
.webp)
Are there differences between single-stage and two-stage air compressors?
Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:
Compression Stages:
The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.
Compression Process:
In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.
Pressure Output:
The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.
Efficiency:
Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.
Intercooling:
Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.
Applications:
The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.
It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.
In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.
.webp)
How do you choose the right size of air compressor for your needs?
Choosing the right size of air compressor is essential to ensure optimal performance and efficiency for your specific needs. Here are some factors to consider when selecting the appropriate size:
1. Air Demand: Determine the air demand requirements of your applications. Calculate the total CFM (Cubic Feet per Minute) needed by considering the air consumption of all the pneumatic tools and equipment that will be operated simultaneously. Choose an air compressor with a CFM rating that meets or exceeds this total demand.
2. Pressure Requirements: Consider the required operating pressure for your applications. Check the PSI (Pounds per Square Inch) rating of the tools and equipment you will be using. Ensure that the air compressor you choose can deliver the necessary pressure consistently.
3. Duty Cycle: Evaluate the duty cycle of the air compressor. The duty cycle represents the percentage of time the compressor can operate within a given time period without overheating or experiencing performance issues. If you require continuous or heavy-duty operation, choose a compressor with a higher duty cycle.
4. Power Source: Determine the available power source at your location. Air compressors can be powered by electricity or gasoline engines. Ensure that the chosen compressor matches the available power supply and consider factors such as voltage, phase, and fuel requirements.
5. Portability: Assess the portability requirements of your applications. If you need to move the air compressor frequently or use it in different locations, consider a portable or wheeled compressor that is easy to transport.
6. Space and Noise Constraints: Consider the available space for installation and the noise restrictions in your working environment. Choose an air compressor that fits within the allocated space and meets any noise regulations or requirements.
7. Future Expansion: Anticipate any potential future expansions or increases in air demand. If you expect your air demand to grow over time, it may be wise to choose a slightly larger compressor to accommodate future needs and avoid the need for premature replacement.
8. Budget: Consider your budgetary constraints. Compare the prices of different air compressor models while ensuring that the chosen compressor meets your specific requirements. Keep in mind that investing in a higher-quality compressor may result in better performance, durability, and long-term cost savings.
By considering these factors and evaluating your specific needs, you can choose the right size of air compressor that will meet your air demand, pressure requirements, and operational preferences, ultimately ensuring efficient and reliable performance.


editor by CX 2024-02-06
China OEM C80-1.2 Noise Control Stainless Turbo Compressor China Suppliers Air Blower Turbo Compressor manufacturer
Product Description
C80-1.2 Noise Control Stainless Turbo Compressor China Suppliers Air Blower Turbo Compressor
Product Description
DECENT MACHINERY offers a full range of multistage centrifugal blowers with 20 models to choose from. We have the right blower for your application today and our Research and Development department is developing new models to meet your needs tomorrow.
Product performance ranges up to 98Kpa pressure or to -40Kpa vacuum and flows from 35 to 220 m³/min. Xihu (West Lake) Dis. manufactures blower and process control systems as well as provides complete blower packages with accessories to meet a wide variety of applications.
Series DM casting multistage centrifugal blower is a high efficient blower product which is developed by our company to introduce American technology and has advanced level in the world today.
This series of products adopts many proprietary or patented technologies, and the blower has much better performance than other competitors in lower noise level, lower vibration, and higher efficiency.
Decent Machinery multistage centrifugal blower/exhauster models cover a broad performance range to meet our needs. Each base model presents its own unique performance characteristics and design features that are illustrated in the chart below and the air maps on the following pages.
| Mutistage Centrifugal Blower | Multi-Stage Centrifugal Fan | Multi-Stage Centrifugal Fan |
Application:
1. Water Treatment
2. Wastewater Treatment
3. Biogas Recovery
4. Vacuum Cleaning
5. Air Knife Dry
6. Floatation and Mineral Beneficiation
7. Galvanization Process and Electric Plating
8. Fluid and Piscina Oxygenation
9. Process Gas Conveying
10. Papermaking and Printing
11. Air Firing (Desulfurization, Carbon Black, Blast CHINAMFG Process, and so on
Detailed Photos
The centrifugal blower housing consists of an inlet head with a special feature to direct air to the inlet of the first impeller and outlet head of special design to eliminate friction and multiple intermediate sections.
These parts are made in cast aluminum according to rigid Continental Industrie specifications, extreme care to be exercised in the assembly of interlocking cast aluminum intermediate sections and annular diffusers (baffles). The entire assembly is securely held together actually with multiple tension rods which bind the entire housing into a CHINAMFG integral unit.
Product Parameters
Our Advantages
There are no parts in relative creep during operation. Since there is no friction and therefore no lubrication is necessary, the conveyed air is not polluted. Moreover, the main advantages of using Decent Machinery multistage centrifugal blowers are:
1.Easy Installation;
2.Low Noise Level;
3.No Vibration;
4.Pulsation Free Gas Flow;
5.No Gas Contamination;
6.Minimal Maintenance.
Company Profile
Packaging & Shipping
Certifications
| After-sales Service: | Yes |
|---|---|
| Warranty: | 1 Year |
| Type: | Centrifuge |
| Usage: | Industrial |
| Product Number: | C15-C500 |
| Flow: | 15-500 M³/Min |
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors employed in the petrochemical industry?
Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:
1. Instrumentation and Control Systems:
Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.
2. Pneumatic Tools and Equipment:
Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.
3. Process Air and Gas Supply:
Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.
4. Cooling and Ventilation:
Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.
5. Nitrogen Generation:
Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.
6. Instrument Air:
Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.
By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.
.webp)
Are there differences between single-stage and two-stage air compressors?
Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:
Compression Stages:
The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.
Compression Process:
In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.
Pressure Output:
The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.
Efficiency:
Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.
Intercooling:
Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.
Applications:
The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.
It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.
In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.
.webp)
How do oil-lubricated and oil-free air compressors differ?
Oil-lubricated and oil-free air compressors differ in terms of their lubrication systems and the presence of oil in their operation. Here are the key differences:
Oil-Lubricated Air Compressors:
1. Lubrication: Oil-lubricated air compressors use oil for lubricating the moving parts, such as pistons, cylinders, and bearings. The oil forms a protective film that reduces friction and wear, enhancing the compressor’s efficiency and lifespan.
2. Performance: Oil-lubricated compressors are known for their smooth and quiet operation. The oil lubrication helps reduce noise levels and vibration, resulting in a more comfortable working environment.
3. Maintenance: These compressors require regular oil changes and maintenance to ensure the proper functioning of the lubrication system. The oil filter may need replacement, and the oil level should be regularly checked and topped up.
4. Applications: Oil-lubricated compressors are commonly used in applications that demand high air quality and continuous operation, such as industrial settings, workshops, and manufacturing facilities.
Oil-Free Air Compressors:
1. Lubrication: Oil-free air compressors do not use oil for lubrication. Instead, they utilize alternative materials, such as specialized coatings, self-lubricating materials, or water-based lubricants, to reduce friction and wear.
2. Performance: Oil-free compressors generally have a higher airflow capacity, making them suitable for applications where a large volume of compressed air is required. However, they may produce slightly more noise and vibration compared to oil-lubricated compressors.
3. Maintenance: Oil-free compressors typically require less maintenance compared to oil-lubricated ones. They do not need regular oil changes or oil filter replacements. However, it is still important to perform routine maintenance tasks such as air filter cleaning or replacement.
4. Applications: Oil-free compressors are commonly used in applications where air quality is crucial, such as medical and dental facilities, laboratories, electronics manufacturing, and painting applications. They are also favored for portable and consumer-grade compressors.
When selecting between oil-lubricated and oil-free air compressors, consider the specific requirements of your application, including air quality, noise levels, maintenance needs, and expected usage. It’s important to follow the manufacturer’s recommendations for maintenance and lubrication to ensure the optimal performance and longevity of the air compressor.


editor by CX 2023-10-26