Tag Archives: compressor

China Best Sales CHINAMFG air compressor 3974548 for engine 6BTA5.9 CHINAMFG best air compressor

Product Description

CHINAMFG air compressor 3974548 for engine 6BTA5.9 Xihu (West Lake) Dis.feng, with list of CHINAMFG air compressors, as below: 

Engine Description Part # Part # Part # Part # Part #
B5.9 air compressor 4937403 4941224 3974549 4932265 3974548
B5.9 air compressor 395714 3914082 3921425    
C8.3 air compressor 3968085 4929623 4946299 3415353 3415475
L8.9 air compressor 4933783 3972531      
ISB air compressor 3971519 4898367 3964687 4988676 4947026
ISF air compressor 5255793 5321238      
QSB air compressor 5286968 3936808 3966517 3969102 3976366
ISB4.5 air compressor 4946294 5286969 3936807 3966732 3969103
ISB6.7 air compressor 3976365 4946483      
ISF air compressor 3696936 5558670 3696935 3695160  
ISME air compressor 315714        
K air compressor 3 0571 11 3417958 4295612    

origins from Cummins, who produces most CHINAMFG engine series and other related products in China, including:
 

SN Models
1 4BT3.9, 6BT5.9, 4ISBE4.5, 6ISBE6.7, QSB4.5, QSB6.7, ISB
2 6CT8.3, L8.9, L9.3, L9.5, ISLe8.9, QSL
3 MTA11, QSM, ISME
4 ISF2.8, ISF3.8, QSF2.8, QSF3.8
5 ISZ13, QSZ13, ISG
6 NT855
7 KT19, KT38, KT50, QSK19, QSK38, etc
8 Stamford
9 Fleetguard
10 Holset

for different applications, such as:
 

SN Applications
1 diesel generator set
2 water pump set, fire pump set
3 construction and engineering machinery (crane, excavator, bulldozer, loader, etc)
4 Automobile (bus, coach, shuttle, etc)
5 marine main propulsion, marine auxiliary generator set

And besides complete engines, we also export a lot of engine parts parts, including:
 

SN Part Descriptions
1 cylinder head, cylinder block, cylinder liner
2 piston, piston ring, conrod
3 main bearing, conrod bearing, thrust bearing
4 fuel injector, fuel injection pump, common rail
5 oil pan gasket, cylinder head gasket
6 overhaul gasket kit, upper gasket kit, lower gasket kit
7 oil pan
8 fuel transfer pump, water pump, oil pump, vacuum pump, power steering pump
9 oil filter, fuel filter, fuel water separator, air filter, Etc

Beyond Cummins, we also deal with many other brands of engines and gearboxes, etc, including:
 

SN Brands
1 Deutz, MWM
2 CAT
3 Detroit
4 Weichai
5 Yuchai
6 SDEC
7 Advance
8 Fada
9 Jinbei, Brilliance
10 Yuejin
11 WEICHAI

FAQ:
Question: What is the price ?
Answer: Our prices are determined by various factors, including: Brand, Model, Power, Quantity, Price Term (FOB, CIF, CPT, FCA, etc), Certificates, etc.
Question: What is the MOQ ?
Answer: for complete engine, 1 set; for engine parts, 1 engine set;
Question: Are samples available ?
Answer: Sample order is acceptable, but with higher unit price.
       For regular partners, if necessary, free samples are available.
Question: How long is the production cycle (lead time) ?
Answer: for engine parts, we usually have enough stock; for engines, usually around 10-20 days; for stock engine, usually 1 week.
Question: How long is the shipment?
Answer: if by Express, usually 3-4 working days; if by air, usually 3-5 working days; if by sea, 3-7 days to Southeast Asia, 15-20 days to Middle East, South Asia and Australia, 20-25 days to Europe, USA and Africa, 30-35 days to Latin America and other regions.
Question: What are your payment methods ?
Answer: we accept T/T (bank wire transfer), L/C, Western Union, Money Gram, Sigue, Secured Trade through Made-in-China, etc.
Question: Do you supply any other brand ?
Answer: we entered stock engine industry since 2016, mainly focusing in engines in stock, never used, still under good condition, made in US/UK/Germany/Japan/Korea/China, etc. Sometimes we have stocks of other brands than our normal list of brands. Thus, any inquiry is warmly welcomed and we will always do best to support customers.

Certification: CCC, ISO9001, TS16949
Engine: 6BT
Part #: 3974548
Weight: 9kg
Transport Package: Paper Box
Specification: 3509N-072-B
Samples:
US$ 155.8/Piece
1 Piece(Min.Order)

|
Request Sample

air compressor

How are air compressors used in the food and beverage industry?

Air compressors play a vital role in the food and beverage industry, providing a reliable source of compressed air for various applications. Here are some common uses of air compressors in this industry:

1. Packaging and Filling:

Air compressors are extensively used in packaging and filling operations in the food and beverage industry. Compressed air is utilized to power pneumatic systems that control the movement and operation of packaging machinery, such as filling machines, capping machines, labeling equipment, and sealing devices. The precise and controlled delivery of compressed air ensures accurate and efficient packaging of products.

2. Cleaning and Sanitization:

Air compressors are employed for cleaning and sanitization purposes in food and beverage processing facilities. Compressed air is used to operate air-powered cleaning equipment, such as air blowguns, air-operated vacuum systems, and air knives. It helps remove debris, dust, and contaminants from production lines, equipment, and hard-to-reach areas. Additionally, compressed air is used for drying surfaces after cleaning and for applying sanitizing agents.

3. Cooling and Refrigeration:

In the food and beverage industry, air compressors are utilized in cooling and refrigeration systems. Compressed air is used to drive air compressors in refrigeration units, enabling the circulation of refrigerants and maintaining optimal temperatures for food storage and preservation. The controlled airflow provided by the compressors facilitates efficient cooling and refrigeration processes.

4. Aeration and Mixing:

Air compressors are used for aeration and mixing applications in the food and beverage industry. Compressed air is introduced into processes such as fermentation, dough mixing, and wastewater treatment. It helps in promoting oxygen transfer, enhancing microbial activity, and facilitating proper mixing of ingredients or substances, contributing to the desired quality and consistency of food and beverage products.

5. Pneumatic Conveying:

In food processing plants, air compressors are employed for pneumatic conveying systems. Compressed air is used to transport bulk materials such as grains, powders, and ingredients through pipes or tubes. It enables the gentle and efficient movement of materials without the need for mechanical conveyors, reducing the risk of product damage or contamination.

6. Quality Control and Testing:

Air compressors are utilized in quality control and testing processes within the food and beverage industry. Compressed air is used for leak testing of packaging materials, containers, and seals to ensure product integrity. It is also employed for spraying air or gases during sensory analysis and flavor testing.

7. Air Agitation:

In certain food and beverage production processes, air compressors are used for air agitation. Compressed air is introduced into tanks, mixing vessels, or fermentation tanks to create turbulence and promote mixing or chemical reactions. It aids in achieving consistent product quality and uniform distribution of ingredients or additives.

It is important to note that air compressors used in the food and beverage industry must meet strict hygiene and safety standards. They may require specific filtration systems, oil-free operation, and compliance with food safety regulations to prevent contamination or product spoilage.

By utilizing air compressors effectively, the food and beverage industry can benefit from improved productivity, enhanced product quality, and efficient processing operations.

air compressor

What safety precautions should be taken when working with compressed air?

Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:

1. Personal Protective Equipment (PPE):

Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.

2. Compressed Air Storage:

Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.

3. Pressure Regulation:

Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.

4. Air Hose Inspection:

Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.

5. Air Blowguns:

Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.

6. Air Tool Safety:

Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.

7. Air Compressor Maintenance:

Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.

8. Training and Education:

Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.

9. Lockout/Tagout:

When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.

10. Proper Ventilation:

Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.

By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.

air compressor

How is air pressure measured in air compressors?

Air pressure in air compressors is typically measured using one of two common units: pounds per square inch (PSI) or bar. Here’s a brief explanation of how air pressure is measured in air compressors:

1. Pounds per Square Inch (PSI): PSI is the most widely used unit of pressure measurement in air compressors, especially in North America. It represents the force exerted by one pound of force over an area of one square inch. Air pressure gauges on air compressors often display pressure readings in PSI, allowing users to monitor and adjust the pressure accordingly.

2. Bar: Bar is another unit of pressure commonly used in air compressors, particularly in Europe and many other parts of the world. It is a metric unit of pressure equal to 100,000 pascals (Pa). Air compressors may have pressure gauges that display readings in bar, providing an alternative measurement option for users in those regions.

To measure air pressure in an air compressor, a pressure gauge is typically installed on the compressor’s outlet or receiver tank. The gauge is designed to measure the force exerted by the compressed air and display the reading in the specified unit, such as PSI or bar.

It’s important to note that the air pressure indicated on the gauge represents the pressure at a specific point in the air compressor system, typically at the outlet or tank. The actual pressure experienced at the point of use may vary due to factors such as pressure drop in the air lines or restrictions caused by fittings and tools.

When using an air compressor, it is essential to set the pressure to the appropriate level required for the specific application. Different tools and equipment have different pressure requirements, and exceeding the recommended pressure can lead to damage or unsafe operation. Most air compressors allow users to adjust the pressure output using a pressure regulator or similar control mechanism.

Regular monitoring of the air pressure in an air compressor is crucial to ensure optimal performance, efficiency, and safe operation. By understanding the units of measurement and using pressure gauges appropriately, users can maintain the desired air pressure levels in their air compressor systems.

China Best Sales CHINAMFG air compressor 3974548 for engine 6BTA5.9 CHINAMFG   best air compressorChina Best Sales CHINAMFG air compressor 3974548 for engine 6BTA5.9 CHINAMFG   best air compressor
editor by CX 2023-11-17

China Standard Glades 100HP Two Stage Screw Air Compressor Rotary Screw Air Compressor 75 Kw Screw Type Air Compressor mini air compressor

Product Description

Glades 100HP Two Stage Screw Air Compressor Rotary Screw Air Compressor 75 kw Screw Type Air Compressor

Motor
The motor with protection class IP54is used, the insulation class is F grade,and the bearing is made of SwedishSKF heavy bearing.

Air end
Adopting twin-screw main engine, largerotor and low speed design, new 5:6asymmetric rotor tooth profile, brandbearing, determines the excellent performance of the whole machine.

Intake valve
The red star intake valve can automaticallyadjust the gas volume according to the requirements of the system gas consumption,reducing operating costs.

MPV

Made of aluminum, it has outstanding antirust performance. With check function.The stable setting of the opening pressureensures that sufficient circulation pressureis established in the system to ensure lubrication of the machine body.

 

Cooling system
Feature:Large cooler system
Advantage:Axial flow Fan used forgood cooling effect
Benefit:Allow ambient temperature at 52″C.

Smart display screen
Feature:Intelligent control systemAdvantage:10 inch monitor to showall the date
Benefit:Simple operation and trouble free

Oil and gas separator
With the Apuda oil and gas separator,the rigorous oil and gas separationfilter can reduce the oil content of theexhaust gas in the compressor andthe fuel   consumption of the unit.

The durable pipe system
The galvanized pipe is more durable, sturdy, longer, longer, and durable.

 

Specification
Model Working Pressure Air Delivery Motor Power Type of Driving Type of Cooling Dimension(mm) Weight Output pipe
psig bar cfm m3/min kw/hp L W H (kg) Diameter
GLDS-10A 100 7 38.8 1.1 7.5/10 Driect driven Air Cooling 850 650 800 240 3/4″
116 8 35.3 1
145 10 30 0.85
181 12.5 24.7 0.7
GLDS-15A 100 7 63.6 1.8 11/15 1050 700 1000 450 3/4″
116 8 58.3 1.65
145 10 53 1.5
181 12.5 45.9 1.3
GLDS-20A 100 7 84.7 2.4 15/20 1050 700 1000 450 3/4″
116 8 77.7 2.2
145 10 74.2 2.1
181 12.5 63.6 1.8
GLDS-25A 100 7 109.5 3.1 18.5/25 1250 850 1100 620 1″
116 8 102.4 2.9
145 10 95.3 2.7
181 12.5 81.2 2.3
GLDS-30A 100 7 134.2 3.8 22/30 1250 850 1100 620 1″
116 8 127.1 3.6
145 10 113 3.2
181 12.5 88.3 2.5
GLDS-40A 100 7 187.1 5.3 30/40 1350 850 1040 680 1-1/2″
116 8 176.6 5
145 10 151.8 4.3
181 12.5 127.1 3.6
GLDS-50A 100 7 233 6.6 37/50 1550 1571 1330 850 1-1/2″
116 8 218.9 6.2
145 10 201.3 5.7
181 12.5 162.4 4.6
GLDS-60A 100 7 282.5 8 45/60 1550 1571 1330 850 1-1/2″
116 8 271.9 7.7
145 10 243.6 6.9
181 12.5 211.9 6
GLDS-75A 100 7 370.8 10.5 55/75 1950 1270 1620 1800 2″
116 8 346 9.8
145 10 307.2 8.7
181 12.5 257.8 7.3
GLDS-100A 100 7 480.2 13.6 75/100 1950 1270 1620 1900 2″
116 8 459 13
145 10 399 11.3
181 12.5 356.6 10.1
GLDS-125A 100 7 572 16.2 90/125 2450 1600 1740 1950 2″
116 8 543.8 15.4
145 10 466.1 13.2
181 12.5 395.5 11.2
Motor Efficiency Class:   Ultraefficient/IE3/IE2 as per your required
Motor Protection Class:   IP23/IP54/IP55 or as per your required
Certification:  CE/ISO9001
Voltage:  380V/3PH/50HZ/60HZ,   220V/3PH/50HZ/60HZ,   400V/3PH/50HZ/60HZ,   440V/3PH/50HZ/60HZ,   415V/3PH/50HZ/60HZ,   230V/3PH/50HZ/60HZ,  dual voltage is also ok

Equipment manufacturing industry: spray painting, spray washing machine, mechanical retreat mold, driving the assembly tools, drilling machine, hammer, lifting driving, combined tools, reamer, run run run, riveter screwdriver rotary drive, forging, metal forming press run operation, blasting, spraying, transmission, driving technology process.
Automobile manufacturing industry: spray cleaning parts, driving the assembly tool, fixture tools, lifting hoist crane, pneumatic control, forging hammer pressing workshop, casting workshop, metal workshop blast spray.
Beverage factory: running, bottle washing machine barrel turn, cHangZhou machine internal spraying, cleaning, food industrial used gas drying bottle, automatic operation, ash dust.
Cement manufacturing: Lime storage ventilation, cement slurry stirring and driving, cement bag clean sealing driving, raw material mixing, tipper operation, cleaning equipment, clinker cooling, conveying of cement and coal, cement kiln cleaning, vehicle and vessel handling, lifting and hoisting device, pneumatic control.
Chemical plant: ventilation and mixing, separation tower with gas, cleaning equipment, combustion gas, transportation, lifting liquid, spraying and cleaning pipe, pneumatic control, process gas, liquid transport.
Power plant: air cleaning pipeline, blowing smoke scale, cleaning of boiler and condenser pipe, jet cleaning, coal, sewage removal transmission, pneumatic control.
Hydropower plant maintenance: engine control, lock, drive controller, drive lubrication pump, driving lock, starting control, cleaning rubbish net.
The food industry (general application): mixing liquid, fermentation tank with gas (oxygen), cleaning equipment, with nozzle with nozzle cleaning container transport, food, raw materials, filtration dehydration.
Forging shop: oxygen skin, door, air curtain lifting hoist and hoist, driving the bending and straightening machine, driving clutch brake and a clamping device, the driving hammer, drive the fuel regulator.
Casting: hot metal car positioning, cleaning equipment, transporting sand, drive pneumatic tools, ramming machine, grinding machine, lifting hoist and elevator, pneumatic pick, tamping machine, steel than the brush, sandblasting, sieve sand, mud core.
Glass factory: blow bottle and glass, blow lamp and electronic tube, combustion gas, raw material, light transmission glass etching and drilling, conveying the glass, pneumatic control, vacuum hanging board.
Iron and steel plant: stirring the solution, oxygen with gas, HangZhou gas, converter with skip positioning, a sediment chamber drilling, unloading bags, open hearth CHINAMFG flue cleaning, driving clutch and brake, drive door, driving loading and transporting device, drive lubrication system, drive pneumatic tools, pneumatic pick, grinding wheel machine, lifting hoist and hoist, sandblasting, blast furnace, vacuum degassing furnace.
Wood, furniture processing: spray cleaning, gas lifting, bending, straightening, disseminated wood clamping clamp, pneumatic tools, carving tools, drilling machine, polishing machine, polishing machine, sand blasting, spray painting, spray device.
Sheet metal workshop: stirring the solution, transportation, jet cleaning, drive chip packaging press, driving plate chuck clutch and positioner, pneumatic tools, pneumatic pick, finishing hammer, drill, grinding wheel machine, crane and elevator, combination tools, riveting machine, sand blasting, spray, spray paint, lubricant container leakage detecting.
The mine ventilation gas, drilling: big hole, gas water removal, filtration fine crumbs, pneumatic hoist driven rock drill rig,,, blow hole, piling machine, drilling machine.
Oil refinery: combustion gas, emptying and cleaning oil, crane and elevator, drive control system, catalyst recycle, sandblasting, painting.
Papermaking factory: clean air equipment, crane and hoist, pool anti icing, roll feeding, pressing paper products, drive clutch, drive off paper machine, paper feeding through the machine, pneumatic control, pressure head box, demolition, removal of waste paper head box, vacuum drying.
Pharmaceutical manufacturers: mixing liquid, antibiotic fermentation with gas (oxygen), transmission of raw materials, raw materials, mixing and stirring driven, pneumatic control, air jet pulverization, spray drying, vacuum drying and vaporization of liquid, transmission.
Plant maintenance: jet cleaning, drive tools (hammer, concrete vibrator, drill, grinding wheel machine, crane, paving stone machine, riveter, oxide skin to wrench, winding machine, sand blasting, spray), metal, spray, spray system.
Textile factory: mixing liquid, gas lifting, moist, operation pressure accumulator, spray, spray system, transfusion.
Rubber factory: clean mold and mechanical devices, gas lifting, demoulding, mold, pneumatic control, spraying.

ZheJiang GLADES MACHINERY EQUIPMENT CO.,LTD.is located in HangZhou -logistics city , with the advantage of rapid transportation of goods. The company covers an area  of more than 20 thousand square meters.with an annual output value of 6 million US dollars and fixed assets more than 10 million US dollars.

Glades’s primary businesses focus in following key areas:Oil-injected rotary screw compressors (Fixed speed and variable speed; normal and low pressure),Oil free screw air compressors (Scroll type, dry type, water-lubricated type),Energy Saving Screw Air Compressor(PM VSD screw air compressor,Two Stage Screw Air Compressor,Scroll screw air compressor),Portable screw air compressors ( electric motor powered),Air treatment equipment (Air dryers, air filters and air receiver tank) .At Glades, we earn our customers’ trust and satisfaction by manufacturing the superior quality compressed air products for all industries. All of our products are designed for reliable performance, easy maintenance, and maximum energy efficiency. Glades has been exporting to more than 35 countries across the globe.
Upholding the core concept of “Reliable Carrying Trust”, ZheJiang Glades strives to provide the most reliable products and services through continuous innovation, so that customers can continue to obtain the maximum value for their returns.
Advantages:
Large displacement: Displacement 10% higher than ordinary piston compressor.
Energy-saving: Compared with piston air compressor, this series of models for the new national standard 2 energy efficiency products, excellent energy saving.
Easy to operate: 24 hours unattended all day work, free load automatically start, full load automatically shut down.
Strong stability:Under long time working, displacement and pressure stable, no crash phenomenon, low failure rate.

FAQ:
Q1:Where is your factory located?
A:Our factory is located in HangZhou city which nears HangZhou port about 2 hours.

Q2:How many air compressors do you produce everyday?
A: We can produce 100 pieces everyday.

Q3: Can you use our brand?
A: Yes, OEM/ODM is available.

Q4:How about your after-sales service?
  a.Provide customers with installation and commissioning online instructions. 
  b.Well-trained engineers available to overseas service. 
  c.CHINAMFG agents and after service available.

Q5:What’s your delivery time?
Generally 15 to 20 days, if urgently order, pls contact our sales in advance.

Q4: Why should I choose you?
1. 24/7 after sales service support in different languages;
2. Guidance of installation and commissioning on site can be provided by factory-trained technicians or local Authorized Service Center;
3. Technical training for customers in Glades air compressor factory or working site;
4. Plenty of original spare parts with proven quality are all available.

5.All kinds of technical documents in different languages.

 

After-sales Service: 24 Hours Online Service
Warranty: 1 Year
Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Horizontal
Customization:
Available

|

air compressor

What is the impact of humidity on compressed air quality?

Humidity can have a significant impact on the quality of compressed air. Compressed air systems often draw in ambient air, which contains moisture in the form of water vapor. When this air is compressed, the moisture becomes concentrated, leading to potential issues in the compressed air. Here’s an overview of the impact of humidity on compressed air quality:

1. Corrosion:

High humidity in compressed air can contribute to corrosion within the compressed air system. The moisture in the air can react with metal surfaces, leading to rust and corrosion in pipes, tanks, valves, and other components. Corrosion not only weakens the structural integrity of the system but also introduces contaminants into the compressed air, compromising its quality and potentially damaging downstream equipment.

2. Contaminant Carryover:

Humidity in compressed air can cause carryover of contaminants. Water droplets formed due to condensation can carry particulates, oil, and other impurities present in the air. These contaminants can then be transported along with the compressed air, leading to fouling of filters, clogging of pipelines, and potential damage to pneumatic tools, machinery, and processes.

3. Decreased Efficiency of Pneumatic Systems:

Excessive moisture in compressed air can reduce the efficiency of pneumatic systems. Water droplets can obstruct or block the flow of air, leading to decreased performance of pneumatic tools and equipment. Moisture can also cause problems in control valves, actuators, and other pneumatic devices, affecting their responsiveness and accuracy.

4. Product Contamination:

In industries where compressed air comes into direct contact with products or processes, high humidity can result in product contamination. Moisture in compressed air can mix with sensitive products, leading to quality issues, spoilage, or even health hazards in industries such as food and beverage, pharmaceuticals, and electronics manufacturing.

5. Increased Maintenance Requirements:

Humidity in compressed air can increase the maintenance requirements of a compressed air system. Moisture can accumulate in filters, separators, and other air treatment components, necessitating frequent replacement or cleaning. Excessive moisture can also lead to the growth of bacteria, fungus, and mold within the system, requiring additional cleaning and maintenance efforts.

6. Adverse Effects on Instrumentation:

Humidity can adversely affect instrumentation and control systems that rely on compressed air. Moisture can disrupt the accuracy and reliability of pressure sensors, flow meters, and other pneumatic instruments, leading to incorrect measurements and control signals.

To mitigate the impact of humidity on compressed air quality, various air treatment equipment is employed, including air dryers, moisture separators, and filters. These devices help remove moisture from the compressed air, ensuring that the air supplied is dry and of high quality for the intended applications.

air compressor

Can air compressors be integrated into automated systems?

Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:

Pneumatic Automation:

Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.

Control and Regulation:

In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.

Sequential Operations:

Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.

Energy Efficiency:

Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.

Monitoring and Diagnostics:

Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.

When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.

In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.

air compressor

What is the difference between a piston and rotary screw compressor?

Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:

1. Operating Principle:

  • Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
  • Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.

2. Compression Method:

  • Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
  • Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.

3. Efficiency:

  • Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
  • Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.

4. Noise Level:

  • Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
  • Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.

5. Maintenance:

  • Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
  • Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.

6. Size and Portability:

  • Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
  • Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.

These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.

China Standard Glades 100HP Two Stage Screw Air Compressor Rotary Screw Air Compressor 75 Kw Screw Type Air Compressor   mini air compressorChina Standard Glades 100HP Two Stage Screw Air Compressor Rotary Screw Air Compressor 75 Kw Screw Type Air Compressor   mini air compressor
editor by CX 2023-11-17

China high quality CHINAMFG Air Compressor Direct Drive 50L 1.5kw 8bar Compresor Aire 8 Bar portable air compressor

Product Description

Bison Air Compressor Direct Drive 50L 1.5Kw 8Bar compresor Aire 8 Bar

 

 

Tank volume 50L/12.6Gal
Volt 230V/50Hz
Power 1.5Kw
Output power 2.0Hp
Speed 2850Rpm
Noise 89dB
Displacement 185L/min
Work pressure 8Bar
Weight 33Kg
Size 740x330x720mm

Product Advantage

 

Application

 

 

Packaging & Shipping

 

Company Profile

 

Certifications

 

Exhibition

 

 

FAQ

 

 

 

Lubrication Style: Lubricated
Cylinder Position: Horizontal
Compress Level: Single-Stage
Tank Volume: 50L/12.6gal
Volt: 230V/50Hz
Power: 1.5kw
Samples:
US$ 116.5/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

Are there special considerations for air compressor installations in remote areas?

Yes, there are several special considerations to take into account when installing air compressors in remote areas. These areas often lack access to infrastructure and services readily available in urban or well-developed regions. Here are some key considerations:

1. Power Source:

Remote areas may have limited or unreliable access to electricity. It is crucial to assess the availability and reliability of the power source for operating the air compressor. In some cases, alternative power sources such as diesel generators or solar panels may need to be considered to ensure a consistent and uninterrupted power supply.

2. Environmental Conditions:

Remote areas can present harsh environmental conditions that can impact the performance and durability of air compressors. Extreme temperatures, high humidity, dust, and corrosive environments may require the selection of air compressors specifically designed to withstand these conditions. Adequate protection, insulation, and ventilation must be considered to prevent damage and ensure optimal operation.

3. Accessibility and Transport:

Transporting air compressors to remote areas may pose logistical challenges. The size, weight, and portability of the equipment should be evaluated to ensure it can be transported efficiently to the installation site. Additionally, the availability of suitable transportation infrastructure, such as roads or air transportation, needs to be considered to facilitate the delivery and installation process.

4. Maintenance and Service:

In remote areas, access to maintenance and service providers may be limited. It is important to consider the availability of trained technicians and spare parts for the specific air compressor model. Adequate planning for routine maintenance, repairs, and troubleshooting should be in place to minimize downtime and ensure the longevity of the equipment.

5. Fuel and Lubricants:

For air compressors that require fuel or lubricants, ensuring a consistent and reliable supply can be challenging in remote areas. It is necessary to assess the availability and accessibility of fuel or lubricant sources and plan for their storage and replenishment. In some cases, alternative or renewable fuel options may need to be considered.

6. Noise and Environmental Impact:

Remote areas are often characterized by their natural beauty and tranquility. Minimizing noise levels and environmental impact should be a consideration when installing air compressors. Selecting models with low noise emissions and implementing appropriate noise reduction measures can help mitigate disturbances to the surrounding environment and wildlife.

7. Communication and Remote Monitoring:

Given the remote location, establishing reliable communication channels and remote monitoring capabilities can be essential for effective operation and maintenance. Remote monitoring systems can provide real-time data on the performance and status of the air compressor, enabling proactive maintenance and troubleshooting.

By addressing these special considerations, air compressor installations in remote areas can be optimized for reliable operation, efficiency, and longevity.

air compressor

Can air compressors be used for medical and dental applications?

Yes, air compressors can be used for various medical and dental applications. Compressed air is a reliable and versatile utility in healthcare settings, providing power for numerous devices and procedures. Here are some common applications of air compressors in medical and dental fields:

1. Dental Tools:

Air compressors power a wide range of dental tools and equipment, such as dental handpieces, air syringes, air scalers, and air abrasion devices. These tools rely on compressed air to generate the necessary force and airflow for effective dental procedures.

2. Medical Devices:

Compressed air is used in various medical devices and equipment. For example, ventilators and anesthesia machines utilize compressed air to deliver oxygen and other gases to patients. Nebulizers, used for respiratory treatments, also rely on compressed air to convert liquid medications into a fine mist for inhalation.

3. Laboratory Applications:

Air compressors are used in medical and dental laboratories for various purposes. They power laboratory instruments, such as air-driven centrifuges and sample preparation equipment. Compressed air is also used for pneumatic controls and automation systems in lab equipment.

4. Surgical Tools:

In surgical settings, compressed air is employed to power specialized surgical tools. High-speed air-driven surgical drills, saws, and bone-cutting instruments are commonly used in orthopedic and maxillofacial procedures. Compressed air ensures precise control and efficiency during surgical interventions.

5. Sterilization and Autoclaves:

Compressed air is essential for operating sterilization equipment and autoclaves. Autoclaves use steam generated by compressed air to sterilize medical instruments, equipment, and supplies. The pressurized steam provides effective disinfection and ensures compliance with rigorous hygiene standards.

6. Dental Air Compressors:

Specialized dental air compressors are designed specifically for dental applications. These compressors have features such as moisture separators, filters, and noise reduction mechanisms to meet the specific requirements of dental practices.

7. Air Quality Standards:

In medical and dental applications, maintaining air quality is crucial. Compressed air used in healthcare settings must meet specific purity standards. This often requires the use of air treatment systems, such as filters, dryers, and condensate management, to ensure the removal of contaminants and moisture.

8. Compliance and Regulations:

Medical and dental facilities must comply with applicable regulations and guidelines regarding the use of compressed air. These regulations may include requirements for air quality, maintenance and testing procedures, and documentation of system performance.

It is important to note that medical and dental applications have specific requirements and standards. Therefore, it is essential to choose air compressors and associated equipment that meet the necessary specifications and comply with industry regulations.

air compressor

In which industries are air compressors widely used?

Air compressors find extensive usage across various industries due to their versatility and ability to generate compressed air. Here are some industries where air compressors are widely employed:

1. Manufacturing: Air compressors are essential in manufacturing processes for powering pneumatic tools and equipment. They are used for tasks such as operating assembly lines, powering robotic machinery, running paint sprayers, and driving pneumatic actuators.

2. Construction: Air compressors play a crucial role in the construction industry. They power pneumatic tools like jackhammers, nail guns, impact wrenches, and concrete breakers. Compressed air is also used for concrete spraying, sandblasting, and operating air-powered lifts and hoists.

3. Automotive: Air compressors are widely used in automotive manufacturing and repair. They power air tools used in auto body shops, tire inflation equipment, pneumatic lifts, and air-operated brake systems. Compressed air is also utilized in vehicle painting and drying processes.

4. Oil and Gas: The oil and gas industry extensively relies on air compressors for various applications. They are used for pneumatic drilling, powering pneumatic tools in refineries and petrochemical plants, operating pneumatic valves and actuators, and providing instrument air for control systems.

5. Food and Beverage: Air compressors are employed in the food and beverage industry for tasks such as packaging, bottling, and sealing. They power pneumatic conveying systems, control air pressure in food processing equipment, and provide clean compressed air for food handling and storage.

6. Pharmaceutical and Healthcare: Air compressors find application in pharmaceutical manufacturing and healthcare facilities. They are used for operating medical equipment, such as ventilators and dental tools. Compressed air is also utilized in pharmaceutical processes, including tablet coating, fluid bed drying, and aseptic packaging.

7. Aerospace: The aerospace industry relies on air compressors for various applications, including aircraft maintenance and assembly. They power pneumatic tools for aircraft repair, provide compressed air for cleaning and pressurizing systems, and support ground operations, such as tire inflation and aircraft de-icing.

8. Mining: Air compressors are extensively used in the mining industry. They power pneumatic tools for drilling, rock blasting, and excavation. Compressed air is also utilized for ventilation, conveying materials, and operating underground equipment.

9. Energy and Utilities: Air compressors play a vital role in the energy and utilities sector. They are used in power generation plants for pneumatic control systems, instrument air, and operating pneumatic valves. Compressed air is also employed for cleaning and maintenance purposes.

These are just a few examples of the industries where air compressors are widely utilized. The versatility and reliability of air compressors make them indispensable in numerous applications across diverse sectors.

China high quality CHINAMFG Air Compressor Direct Drive 50L 1.5kw 8bar Compresor Aire 8 Bar   portable air compressorChina high quality CHINAMFG Air Compressor Direct Drive 50L 1.5kw 8bar Compresor Aire 8 Bar   portable air compressor
editor by CX 2023-11-16

China best CHINAMFG Lgzj-35/25 Diesel Screw Air Compressor air compressor CHINAMFG freight

Product Description

Product Description

KaiShan LGZJ-35/25 Diesel Screw Air Compressor
   
    CHINAMFG screw air compressors, offering the industry’s high standard of working performance and meeting a wide range of construction needs in the market. It adopts high compression efficiency screw main engine, powerful brand engine, air volume control system to meet a wide range of needs and efficient cooling system for excellent performance and reliability.

FAQ:
Q1: Are you a factory or trade company?
A1: We are a factory. And we have ourselves trading company.

Q2: What is the exact address of your factory?
A2: Our company is located in No.625, Century Avenue, HangZhou, ZHangZhoug, China

Q3: Warranty terms of your machine?
A3: One-year warranty for the machine and technical support according to your needs.

Q4: Will you provide some spare parts for the machines?
A4: Yes, of course.

Q5: What about the voltage of products? Can they be customized?
A5: Yes, of course. The voltage can be customized according to your requirements.

Q6: Which payment term can you accept?
A6: 30% T/T in advanced, 70% T/T against the B/L copy.

Q7: How long will you take to arrange production?
A7: 380V 50HZ we can deliver the goods within 7-15 days. Other electricity or another color we will delivery within 25-30 days.

Q8: Which trade term can you accept?
A9: Available trade terms: FOB, CIF, CFR, EXW, CPT, etc.
 

Lubrication Style: Lubricated
Cooling System: Water Cooling
Power Source: Diesel Engine
Cylinder Position: Angular
Structure Type: Closed Type
Installation Type: Stationary Type

air compressor

How does variable speed drive technology improve air compressor efficiency?

Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:

1. Matching Air Demand:

Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.

2. Reduced Unloaded Running Time:

Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.

3. Soft Starting:

Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.

4. Energy Savings at Partial Load:

In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.

5. Elimination of On/Off Cycling:

Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.

6. Enhanced System Control:

VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.

By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.

air compressor

How are air compressors used in refrigeration and HVAC systems?

Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:

1. Refrigerant Compression:

In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.

2. Refrigeration Cycle:

The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.

3. HVAC Cooling and Heating:

In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.

4. Air Conditioning:

Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.

5. Compressor Types:

Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.

6. Energy Efficiency:

Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.

By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.

air compressor

Are there air compressors specifically designed for high-pressure applications?

Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:

1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.

2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.

3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.

4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:

  • Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
  • Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
  • Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
  • Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
  • Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.

5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.

When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.

High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.

China best CHINAMFG Lgzj-35/25 Diesel Screw Air Compressor   air compressor CHINAMFG freightChina best CHINAMFG Lgzj-35/25 Diesel Screw Air Compressor   air compressor CHINAMFG freight
editor by CX 2023-11-14

China supplier 390cfm Portable Screw Air Compressor air compressor for car

Product Description

185CFM Mobile Trailer portable Diesel Engine driven Screw Air compressor
5.2CBM , 8bar/116psi air pressure. 
With 1500hrs/12months warranty

125cfm, 185cfm,265cfm,390cfm,530cfm,750cfm available.

ZHangZhouG UNIVERSAL MACHINERY CO.,LTD. since 2007 specialized in production and slaes of Diesel generators, Super-silent generator,REEFER CONTAINER generator, Solar light tower,Mobile generator light tower, Air compressor, and other the development of new products.
Our factory locaed in HangZhou city, west of ZHangZhoug provice in China, Factory occupies over 16 thousand square CHINAMFG and has a beautiful, clean and tidy environment. “strict management, brave innovation, customer satisfaction and strive for the brand.” is our manufacturing principle. Through the improvement of the production process, we have accumulated rich experience in design,manufacture and debugging. We used the most advanced full-automatic laser cutting machine and automatic bending machine to improve production level.High-quality raw materials, advanced technology and equipment as well as good management enable us to provide customers with good-quality products and international-level service.Ensuring reliable and steady performance of our products.
We set branch in DUBAI,for spare parts supply and after sales.Till nowadays we developed agent in main countries all over the world like USA Australia,France,Indinesia,Palestine,Nigeria,Venezuelia,Philppines,Malasia,Singapore ect.
Our products are sold all over the world. We offering UNIV power system equipment and high-quality sevice to over 100 contries.

 

After-sales Service: Yes
Warranty: 1
Lubrication Style: Lubricated
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

Can air compressors be used for shipbuilding and maritime applications?

Air compressors are widely used in shipbuilding and maritime applications for a variety of tasks and operations. The maritime industry relies on compressed air for numerous essential functions. Here’s an overview of how air compressors are employed in shipbuilding and maritime applications:

1. Pneumatic Tools and Equipment:

Air compressors are extensively used to power pneumatic tools and equipment in shipbuilding and maritime operations. Pneumatic tools such as impact wrenches, drills, grinders, sanders, and chipping hammers require compressed air to function. The versatility and power provided by compressed air make it an ideal energy source for heavy-duty tasks, maintenance, and construction activities in shipyards and onboard vessels.

2. Painting and Surface Preparation:

Air compressors play a crucial role in painting and surface preparation during shipbuilding and maintenance. Compressed air is used to power air spray guns, sandblasting equipment, and other surface preparation tools. Compressed air provides the force necessary for efficient and uniform application of paints, coatings, and protective finishes, ensuring the durability and aesthetics of ship surfaces.

3. Pneumatic Actuation and Controls:

Air compressors are employed in pneumatic actuation and control systems onboard ships. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control propulsion systems, and manage various shipboard processes. Pneumatic control systems offer reliability and safety advantages in maritime applications.

4. Air Start Systems:

In large marine engines, air compressors are used in air start systems. Compressed air is utilized to initiate the combustion process in the engine cylinders. The compressed air is injected into the cylinders to turn the engine’s crankshaft, enabling the ignition of fuel and starting the engine. Air start systems are commonly found in ship propulsion systems and power generation plants onboard vessels.

5. Pneumatic Conveying and Material Handling:

In shipbuilding and maritime operations, compressed air is used for pneumatic conveying and material handling. Compressed air is utilized to transport bulk materials, such as cement, sand, and grain, through pipelines or hoses. Pneumatic conveying systems enable efficient and controlled transfer of materials, facilitating construction, cargo loading, and unloading processes.

6. Air Conditioning and Ventilation:

Air compressors are involved in air conditioning and ventilation systems onboard ships. Compressed air powers air conditioning units, ventilation fans, and blowers, ensuring proper air circulation, cooling, and temperature control in various ship compartments, cabins, and machinery spaces. Compressed air-driven systems contribute to the comfort, safety, and operational efficiency of maritime environments.

These are just a few examples of how air compressors are utilized in shipbuilding and maritime applications. Compressed air’s versatility, reliability, and convenience make it an indispensable energy source for various tasks and systems in the maritime industry.

air compressor

What safety precautions should be taken when working with compressed air?

Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:

1. Personal Protective Equipment (PPE):

Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.

2. Compressed Air Storage:

Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.

3. Pressure Regulation:

Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.

4. Air Hose Inspection:

Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.

5. Air Blowguns:

Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.

6. Air Tool Safety:

Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.

7. Air Compressor Maintenance:

Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.

8. Training and Education:

Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.

9. Lockout/Tagout:

When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.

10. Proper Ventilation:

Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.

By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.

air compressor

What are the key components of an air compressor system?

An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:

1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.

2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.

3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.

4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.

5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.

6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.

7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.

8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.

9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.

10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.

These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.

China supplier 390cfm Portable Screw Air Compressor   air compressor for carChina supplier 390cfm Portable Screw Air Compressor   air compressor for car
editor by CX 2023-11-14

China manufacturer Supc Series 185cfm 8bar Heavy Duty Diesel Rotary Screw Air Compressor for Construction portable air compressor

Product Description

 

Mature Factory Similar CHINAMFG Trailer Mounted Portable Movable Diesel Screw Air Compressor 200-1800 cfm For Drilling Machine

High Pressure Movable Screw Air Compressor for Drilling Rig

Mobile Diesel Powered Air Compressor 25 Bar for Well Drilling

Packaging & Shipping

FAQ

Q7: Can you give us your best price
 A7: Yes, of course. And we can offer more stable quality products at a suitable price.

 Q8: Please send price list ? 
 A8: OK, could you please provide us with your way of communication?

 Q9: Can you send the real picture of the product? 
 A9: Yes,of course,you please check the pictures and videos,just let me know how many you need ?

 Q10: Would it be convenient to hand out your product manual? 
 A10: Hello,friend,this is our catalog,and the model SUPC560-25-T is the most hot sell,do you need to more introduction?

 

Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: Diesel Engine
Cylinder Position: Vertical
Structure Type: Closed Type
Installation Type: Movable Type
Customization:
Available

|

air compressor

How are air compressors utilized in the aerospace industry?

Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:

1. Aircraft Systems:

Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.

2. Ground Support Equipment:

Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.

3. Component Testing:

Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.

4. Airborne Systems:

In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.

5. Environmental Control Systems:

Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.

6. Engine Testing:

In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.

7. Oxygen Systems:

In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.

It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.

air compressor

How does the horsepower of an air compressor affect its capabilities?

The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:

Power Output:

The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.

Air Pressure:

The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.

Air Volume:

In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.

Duty Cycle:

The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.

Size and Portability:

It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.

When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.

Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.

air compressor

Can you explain the basics of air compressor terminology?

Understanding the basic terminology related to air compressors can help in better comprehension of their operation and discussions related to them. Here are some essential terms related to air compressors:

1. CFM (Cubic Feet per Minute): CFM is a unit of measurement that denotes the volumetric flow rate of compressed air. It indicates the amount of air a compressor can deliver within a minute and is a crucial factor in determining the compressor’s capacity.

2. PSI (Pounds per Square Inch): PSI is a unit of measurement used to quantify pressure. It represents the force exerted by the compressed air on a specific area. PSI is a vital specification for understanding the pressure capabilities of an air compressor and determining its suitability for various applications.

3. Duty Cycle: Duty cycle refers to the percentage of time an air compressor can operate in a given time period. It indicates the compressor’s ability to handle continuous operation without overheating or experiencing performance issues. For instance, a compressor with a 50% duty cycle can run for half the time in a given hour or cycle.

4. Horsepower (HP): Horsepower is a unit used to measure the power output of a compressor motor. It indicates the motor’s capacity to drive the compressor pump and is often used as a reference for comparing different compressor models.

5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air delivered by the compressor. It helps in stabilizing pressure fluctuations, allowing for a more consistent supply of compressed air during peak demand periods.

6. Single-Stage vs. Two-Stage: These terms refer to the number of compression stages in a reciprocating air compressor. In a single-stage compressor, air is compressed in a single stroke of the piston, while in a two-stage compressor, it undergoes initial compression in one stage and further compression in a second stage, resulting in higher pressures.

7. Oil-Free vs. Oil-Lubricated: These terms describe the lubrication method used in air compressors. Oil-free compressors have internal components that do not require oil lubrication, making them suitable for applications where oil contamination is a concern. Oil-lubricated compressors use oil for lubrication, enhancing durability and performance but requiring regular oil changes and maintenance.

8. Pressure Switch: A pressure switch is an electrical component that automatically starts and stops the compressor motor based on the pre-set pressure levels. It helps maintain the desired pressure range in the receiver tank and protects the compressor from over-pressurization.

9. Regulator: A regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications and ensures a consistent and safe supply of compressed air.

These are some of the fundamental terms associated with air compressors. Familiarizing yourself with these terms will aid in understanding and effectively communicating about air compressors and their functionality.

China manufacturer Supc Series 185cfm 8bar Heavy Duty Diesel Rotary Screw Air Compressor for Construction   portable air compressorChina manufacturer Supc Series 185cfm 8bar Heavy Duty Diesel Rotary Screw Air Compressor for Construction   portable air compressor
editor by CX 2023-11-13

China OEM Industry Heavy Duty Low Pressure Two-Stage Pm VSD Screw Air Compressor Variable Frequency 125HP, 150HP, 180HP, 220HP, 160kw, 185kw, 220kw, 250kw, 315kw with Hot selling

Product Description

Product Description

Product Parameters

Model Motor Power Maximum Working Pressure Free Air Delivery Air Outlet Pipe Diameter Weight Dimensions(L*W*H)
kW hp bar(g) psig m³/min cfm kg mm
BG50APMII 37 50 4 58 10.3  364 G2″ 1600 2100*1300*1650
5 73 9.5  335
BG60APMII 45 60 4 58 12.2  431 G2″ 1650 2100*1300*1650
5 73 11.5  406
BG75APMII 55 75 4 58 15.5  547 G2″ 1700 2100*1300*1650
5 73 14.5  512
BG100APMII 75 100 4 58 19.5  689 DN80 2700 2500*1650*1900
5 73 19.0  671
BG125APMII 90 125 4 58 24.5  865 DN80 2800 2500*1650*1900
5 73 23.0  812
BG150APMII 110 150 4 58 28.0  989 DN80 2900 2500*1650*1900
5 73 27.5  971
BG180APMII 132 180 4 58 36.0  1271 DN100 3100 3000*1900*1950
5 73 34.0  1201
BG220APMII 160 220 4 58 46.0  1624 DN100 4400 3000*1900*1950
5 73 42.0  1483
BG250APMII 185 250 4 58 52.0  1836 DN125 5500 3600*2200*2200
5 73 45.0  1589
BG270APMII 200 270 4 58 57.0  2013 DN125 6000 3600*2200*2200
5 73 51.5  1819
BG300APMII 220 300 4 58 62.0  2190 DN150 6800 4000*2300*2300
5 73 55.0  1942
BG340APMII 250 340 4 58 65.0  2295 DN150 7500 4000*2300*2300
5 73 61.0  2154

Company Profile

Wallboge is a high-tech enterprise and is considered 1 of the leading manufacturers of air compressor products in China. Our goal is to provide exceptional customer service coupled with quality products and energy saving solutions.

Wallboge’ s primary businesses focus in following key areas:

Integrated screw air compressor for laser cutting
Permanent magnet variable frequency screw air compressor
Two-stage compression permanent magnet variable frequency screw air compressor
Low pressure two-stage compression permanent magnet variable frequency screw air compressor
Low pressure permanent magnet variable frequency screw air compressor
Water-lubricated oil-free screw air compressor
Fixed speed screw air compressor
Oil-free screw blower
Screw vacuum pump

At Wallboge, we earn our customers’ trust and satisfaction by manufacturing the superior quality compressed air products for all industries. All of our products are designed for reliable performance, easy maintenance, and maximum energy efficiency. CHINAMFG has been exporting to more than 150 countries across the globe. 

Wallboge continuously innovates product development and management to meet customers’ demand. The powerful enterprise culture and continuous innovation make CHINAMFG improved rapidly. Wallboge’ s vision is to be a world-renowned high-end energy-saving machinery brand, with sustainable development, constantly improving its own value and sharing it with our customers and staff, committed to continuously satisfying the needs of global companies by providing a full range of industrial air compression solutions.

Certifications

Exhibitions

 

After Sales Service

1. 24/7 after sales service in different languages.
2. Online instruction for installation and commissioning.
3. On-site instruction for installation and commissioning provided by well-trained engineers or local authorized service center.
4. CHINAMFG agents and after sales service available.
 

Our Advantages

1. Proven product quality.
2. Factory direct prices.
3. On-time delivery.
4. Prompt technical support in different languages before sales, in sales and after sales.
5. Small orders accepted to check quality first.
6. OEM & ODM service available.

 

FAQ

Q1: Are you a factory or a trading company? 
A1: We are a factory. Please check our Company Profile.

Q2: What is the exact address of your factory? 
A2: No. 588, East Tonggang Road, Shaxi Town, HangZhou City, ZheJiang Province, China

Q3: What is your delivery time?
A3: For standard voltage, the delivery time is 15 working days after you confirm the order. For non-standard voltage, please contact our sales to confirm the delivery time.

Q4: What kind of payment terms do you accept?
A4: We accept T/T, L/C at sight.

Q5: How long is the warranty of your air compressor?
A5: 2 years for the whole air compressor except consumable spare parts.

Q6: How long could your air compressor be used?
A6: Generally, more than 10 years.

Q7: What is your MOQ requirement?
A7: 1 unit.

Q8: Can you offer OEM & ODM service?
A8: Yes, with a professional design team, we can offer OEM & ODM service.

After-sales Service: Engineers Available to Overseas Service.
Warranty: 2 Years
Lubrication Style: Lubricated
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

Can air compressors be used for gas compression and storage?

Yes, air compressors can be used for gas compression and storage. While air compressors are commonly used to compress and store air, they can also be utilized for compressing and storing other gases, depending on the specific application requirements. Here’s how air compressors can be used for gas compression and storage:

Gas Compression:

Air compressors can compress various gases by utilizing the same principles applied to compressing air. The compressor takes in the gas at a certain pressure, and through the compression process, it increases the pressure and reduces the volume of the gas. This compressed gas can then be used for different purposes, such as in industrial processes, gas pipelines, or storage systems.

Gas Storage:

Air compressors can also be used for gas storage by compressing the gas into storage vessels or tanks. The compressed gas is stored at high pressure within these vessels until it is needed for use. Gas storage is commonly employed in industries where a continuous and reliable supply of gas is required, such as in natural gas storage facilities or for storing compressed natural gas (CNG) used as a fuel for vehicles.

Gas Types:

While air compressors are primarily designed for compressing air, they can be adapted to handle various gases, including but not limited to:

  • Nitrogen
  • Oxygen
  • Hydrogen
  • Carbon dioxide
  • Natural gas
  • Refrigerant gases

It’s important to note that when using air compressors for gas compression and storage, certain considerations must be taken into account. These include compatibility of the compressor materials with the specific gas being compressed, ensuring proper sealing to prevent gas leaks, and adhering to safety regulations and guidelines for handling and storing compressed gases.

By leveraging the capabilities of air compressors, it is possible to compress and store gases efficiently, providing a reliable supply for various industrial, commercial, and residential applications.

air compressor

How do you troubleshoot common air compressor problems?

Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:

1. No Power:

  • Check the power source and ensure the compressor is properly plugged in.
  • Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
  • Verify that the compressor’s power switch or control panel is turned on.

2. Low Air Pressure:

  • Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
  • Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
  • Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.

3. Excessive Noise or Vibration:

  • Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
  • Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
  • Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.

4. Air Leaks:

  • Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
  • Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
  • Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.

5. Excessive Moisture in Compressed Air:

  • Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
  • Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
  • Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.

6. Motor Overheating:

  • Ensure the compressor’s cooling system is clean and unobstructed.
  • Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
  • Verify that the compressor is not being operated in an excessively hot environment.
  • Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
  • Consider using a thermal overload protector to prevent the motor from overheating.

If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.

air compressor

What is the difference between a piston and rotary screw compressor?

Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:

1. Operating Principle:

  • Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
  • Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.

2. Compression Method:

  • Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
  • Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.

3. Efficiency:

  • Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
  • Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.

4. Noise Level:

  • Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
  • Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.

5. Maintenance:

  • Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
  • Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.

6. Size and Portability:

  • Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
  • Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.

These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.

China OEM Industry Heavy Duty Low Pressure Two-Stage Pm VSD Screw Air Compressor Variable Frequency 125HP, 150HP, 180HP, 220HP, 160kw, 185kw, 220kw, 250kw, 315kw   with Hot sellingChina OEM Industry Heavy Duty Low Pressure Two-Stage Pm VSD Screw Air Compressor Variable Frequency 125HP, 150HP, 180HP, 220HP, 160kw, 185kw, 220kw, 250kw, 315kw   with Hot selling
editor by CX 2023-11-13

China Professional (SCR90EPM) Permanent Magnet Screw Air Compressor Rotary Screw Air Compressor Energy Saving Compressor air compressor parts

Product Description

Product Technical Description

Model :   Energy Saving Series (EPM)
Type:  Oil Injected Permanent Magnetic Screw Compressor
Voltage:  380V/50HZ/3P, 220V/60HZ/3P, 400V/50HZ/3P, 415V/50HZ/3P or Customer′s Requirements
Working Pressure:  7~13bar
Installed Motor Power:  15~110 Kw
Color:  Blue
Driven Method: Taper Connection Direct Driven
Air End:  Original Ally-win Air End from Germany.
Trademark:  SCR
Transport Package:  Standard Wooden Packing
Available Certificate:  CE, ISO, UL, ASME, GHOST
Origin:  ZheJiang , China
application:  Casting,Metal,Plastic,Rubber

Product Features

1. China-Japan latest technology cooperation, high reliability.

2. Oil Cooling  Permanent Magnetic Motor.

3. IP65 protection grade & heavy duty air filter, suitable for high dusty environment. 

4. IE4 Efficiency motor efficiency.

5.Max.RPM 1500,low noise,high efficiency,better life-span.

6. Most energy saving mode, Only work at loading.

7. Wide frequency range 30%-100%.

8. Premium Magnetic material resist more than 180ºC temp.

9. Reliable PM motor supplier from Italy.

10. Direct Taper connection, no transmission power loss, easy maintenance.

11.Touch Screen PLC with preset running schedule, more intelligent control.

12. Precise VSD technology control.

13. Easy for installation and service.

14. Fantastic Energy Saving, save up to more than 30-40%.

Specially designed PM motor:

The PM motor efficiency is even higher than IE3 premium efficiency motors. The motor uses high performance magnetic materials giving many advantages such as bearing free operation, grease free maintenance, direct 1:1 coupling without transmission losses, low noise and low vibration leading to a compact structure.

Enhanced Energy Savings:

When demand is low the PM low pressure compressor firstly reduces the speed to maintain the correct flow demand. If the air demand stops the compressor enters standby mode, saving further energy. The compressor automatically restarts and runs when the pressure drops below its setpoint.

The latest generation intelligent touchscreen controller:

SCR’s latest touchscreen interface allows simple intelligent control for your compressor. Pressure and scheduling times can be easily programmed allowing you to automatically start and stop the compressor to match production times. Remote operation and real time monitoring are built in the controller as standard.

Model SCR90EPM-7 SCR90EPM-8 SCR90EPM-10
Capacity/Pressure(m3/min,/BAR) 12.7/7 12.5/8 12.3/10
PM Motor Power(KW) 63KW(90H.P)
Speed(r/min) 1500
Starting way VSD Startup
Volt(V) 380/400/415(220)
Motor safety grade IP54
Motor isolation grade F
Electrical Supply 380(400,415)V/50Hz/3Phase, 220V/60HZ/3P
Outlet Temperature(ºC) ≤ Environment Temperature+10ºC
Driven way Direct Driven
Noise level at 1 meter 76±3dB(A)
Cooling method Air cooling
Oil content 1~3 ppm
Outlet Connection Rc 2
Dimension Length(mm) 2300
Width(mm) 1350
Height(mm) 1500
Weight(KG) 1800

Product Categories

Advantages

Application

About SCR

 

Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Vertical
Structure Type: Closed Type
Installation Type: Stationary Type
Customization:
Available

|

air compressor

How does variable speed drive technology improve air compressor efficiency?

Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:

1. Matching Air Demand:

Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.

2. Reduced Unloaded Running Time:

Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.

3. Soft Starting:

Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.

4. Energy Savings at Partial Load:

In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.

5. Elimination of On/Off Cycling:

Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.

6. Enhanced System Control:

VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.

By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.

air compressor

How do you choose the right air compressor for woodworking?

Choosing the right air compressor for woodworking is essential to ensure efficient and effective operation of pneumatic tools and equipment. Here are some factors to consider when selecting an air compressor for woodworking:

1. Required Air Volume (CFM):

Determine the required air volume or cubic feet per minute (CFM) for your woodworking tools and equipment. Different tools have varying CFM requirements, so it is crucial to choose an air compressor that can deliver the required CFM to power your tools effectively. Make sure to consider the highest CFM requirement among the tools you’ll be using simultaneously.

2. Tank Size:

Consider the tank size of the air compressor. A larger tank allows for more stored air, which can be beneficial when using tools that require short bursts of high air volume. It helps maintain a consistent air supply and reduces the frequency of the compressor cycling on and off. However, if you have tools with continuous high CFM demands, a larger tank may not be as critical.

3. Maximum Pressure (PSI):

Check the maximum pressure (PSI) rating of the air compressor. Woodworking tools typically operate within a specific PSI range, so ensure that the compressor can provide the required pressure. It is advisable to choose an air compressor with a higher maximum PSI rating to accommodate any future tool upgrades or changes in your woodworking needs.

4. Noise Level:

Consider the noise level of the air compressor, especially if you’ll be using it in a residential or shared workspace. Some air compressors have noise-reducing features or are designed to operate quietly, making them more suitable for woodworking environments where noise control is important.

5. Portability:

Assess the portability requirements of your woodworking projects. If you need to move the air compressor frequently or work in different locations, a portable and lightweight compressor may be preferable. However, if the compressor will remain stationary in a workshop, a larger, stationary model might be more suitable.

6. Power Source:

Determine the power source available in your woodworking workspace. Air compressors can be powered by electricity or gasoline engines. If electricity is readily available, an electric compressor may be more convenient and cost-effective. Gasoline-powered compressors offer greater flexibility for remote or outdoor woodworking projects where electricity may not be accessible.

7. Quality and Reliability:

Choose an air compressor from a reputable manufacturer known for producing reliable and high-quality equipment. Read customer reviews and consider the warranty and after-sales support offered by the manufacturer to ensure long-term satisfaction and reliability.

8. Budget:

Consider your budget and balance it with the features and specifications required for your woodworking needs. While it’s important to invest in a reliable and suitable air compressor, there are options available at various price points to accommodate different budgets.

By considering these factors and evaluating your specific woodworking requirements, you can choose an air compressor that meets the demands of your tools, provides efficient performance, and enhances your woodworking experience.

air compressor

Are there air compressors specifically designed for high-pressure applications?

Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:

1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.

2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.

3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.

4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:

  • Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
  • Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
  • Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
  • Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
  • Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.

5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.

When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.

High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.

China Professional (SCR90EPM) Permanent Magnet Screw Air Compressor Rotary Screw Air Compressor Energy Saving Compressor   air compressor partsChina Professional (SCR90EPM) Permanent Magnet Screw Air Compressor Rotary Screw Air Compressor Energy Saving Compressor   air compressor parts
editor by CX 2023-11-11

China OEM 7.5kw 15kw 22kw Screw Air Compressor 380V/3pH/50Hz IP55 Direct Driven Factory Direct air compressor price

Product Description

7.5kw 15kw 22kw Screw Air Compressor 380V/3pH/50Hz IP55 Direct Driven Factory Direct

Promises Every Machine Will Run Well More Than 15 Years 

Product Description

 

Brief Introduction:

Air end: Germany Technology. 30 years designed lifetime.
Motor: Top quality ,IP54 or IP55
Inverter: Danish brand inverter can save 30% energy.
Warranty: 5 years for the air end, and 2 years for the whole compressor. 
Delivery time: 7-15 days. 
After-sales service:we have our professional after-sales technician to instruct the installation of the whole screw air compressor.    
Certificate: CE/ISO9001/ASME
We offer free pipe and valves for installation and installation diagram

 

Basic introduction of screw air compressor

 

Model :  7.5kw 15kw 22kw Screw Air Compressor 380V/3pH/50Hz IP55 Direct Driven Factory Direct
Type:  Energy Saving Air Compressor
Voltage:  380V/50HZ/3P, 220V/60HZ/3P, 400V/50HZ/3P, 415V/50HZ/3P or Customer′s Requirements
Working Pressure:  7~12.5 bar
Installed Motor Power:  11kw
Capacity: 1.5-0.8m3/min
Color:  Blue or gery
Driven Method: Direct drive
Air End: Original Ally-win Air End from Germany
Trademark:  Hengchaowin
Transport Package:  Standard Wooden Packing
Available Certificate:  CE, ISO, UL, ASME, GHOST
Origin:  ZheJiang , China
application:  Casting , Metal , Plastic , Rubber

Detailed Photos

1.permanent magnet motor.
Exceed IE3 standards
IP54 or IP55 protecting grad
Variable speed drive

2.Germany technology air end 
R&D in Germany GU or CHINAMFG brand air end
designed for 10 years +of reliable operation

3.Inlet valve
same desige as CHINAMFG Rand 
No blow-off losses/large suction are
Full aluminum design,maintenance-free

4.oil gas tank & built in separation system. 
Oversized air end oil tank with sight glass
The high efficiency oil seperator ensures that the oil carry over in less than 3ppm.
System pressure loss,less than 0.02mpa.

5.Polt touch controller
HD color touch LCD screen
Operation record/chart display
Weekly timer/service history and plHangZhou
Real-time operation/maintenance/alarm information

6.Innovative vectorial inverter
CE,UL,CUL,ROSH certification
Independent cooling air duct design
Robust enclosure for trouble-free operation in the harshest conditions.

 

Product Parameters

 

Model 
Modelo
HW-7T HW-11T HW-15T HW-22T HWV-30A HWV-37A
air flow
flujo de aire
Lliter/min 1 0.9 0.8 1.5 1.3 1.1 0.8 2.4 2.1 1.5 1 3.5 3.1 2.7 1.7 4.3 3.6 2.4 2.9 5.8 5.2 2.8 3.2
35 31 28 52 46 39 28 74 74 52 35 124 109 95 35 151 127 74 102 205 183 98 112
working pressure
presión laboral
bar(kg) 8 10 12.5 8 10 12.5 15 8 10 12.5 15 8 10 12.5 15 10 12.5 15 20 10 12.5 15 20
psi 116 145 174 116 145 174 217 116 145 174 217 116 145 174 217 145 174 217 290 145 174 217 290
power
poder
KW / HP 7.5kw/
10hp
11kw/
15hp
15kw/
20hp
22kw/
30hp
30kw/
40hp
37kw/
50hp
noise db(A) 62±2 66±2 66±2 68±2 68±2 72±2
Caliber inch RP 1/2 RP 1/2 RP 1/2 RP 1/2 RP 1 RP1 1/2
Voltage/Frequency AC 380v/415v/220v/480v   or   50hz/60hz  accpet Customized voltage
Starting mode
Modo de inicio
variable frequency start  
inicio de frecuencia variable
air dryer
secador
m³/min 1.5 1.5 2.5 3.8 / /
line filter
filtro de línea
m³/min 1.5 1.5 2.5 3.8 / /
air tank
tanque de aire
liter 300 400 400 600 / /
Shape dimension
(mm)
L 1700 1180 1180 1600 1300 1450
W 800 800 800 110 910 910
H 1689 1210 1210 1290 1290 1290
Weight KG 500 600 650 700 520 720

Hot products
1. direct drive rotary screw air compressor
2. energy saving VSD air compressor
3. air compressor with air tank and air dryer
4. 2 stage VSD screw air compressor

 

Company Profile

Why Choose Us

HangZhou CHINAMFG Technology Co., Ltd., founded in 1985, in ZheJiang ,China, It is a professional air compressor manufacturer with 30 years of experience in R&D, manufacturing, marketing and service.

After the technical system reform in 2000, the company introduced German advanced CHINAMFG technology, adhering to the German advanced industrial design concept, rigorous manufacturing technology and comprehensive management. We strictly implement ISO9001 international quality system certification and EU CE standard production machines. The performance and quality of our products have been widely recognized and praised by the market, occupying 30% of China’s market share.
Starting to enter overseas markets in 2571, it currently has agents and after-sales teams in North America, Western Europe, South Africa, East Africa and other regions.

Brief introduction of factory:
1. We have been engaged in R D department, production and sales of air compressors for 30 years;  
2. Our air compressor products through CE,SGS,ISO certification, with more than 20 invention patents;  
3. Our products are exported to 132 countries and regions around the world;  
4. Our air compressor provides a 5-year warranty.  
If you have specific parameters and requirements for our Rotary Screw Type Air Compressor, customization is available

Customer feedback

Providing high-quality machines is our standard, and satisfying every customer is our pursuit. Over the years, we have won unanimous praise from overseas users for our integrity and high-quality product quality.

 

Packaging & Shipping

The air compressor is guaranteed for 1 year and 5 years for the screw(air end) . Warranty time is calculated from machine leave the factory.
 

FAQ

 

Q1: How long could your air compressor be used?
O: Generally, more than 10 years

Q2: What’s payment term?
O: T/T, L/C, Paypal and etc. Also we could accept USD, RMB, Euro and other currency (Pls contact our sales for more information

Q3: How about your customer service?
O: 24 hours on-line service available

Q4: How about your after-sales service?
O: 1. Provide customers with installation and commissioning online instructions.
2. Well-trained engineers available to overseas service
3. World wide agents and after service available

After-sales Service: Support Online and Local Service
Warranty: 1 Year
Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: No
Customization:
Available

|

air compressor

How are air compressors used in the food and beverage industry?

Air compressors play a vital role in the food and beverage industry, providing a reliable source of compressed air for various applications. Here are some common uses of air compressors in this industry:

1. Packaging and Filling:

Air compressors are extensively used in packaging and filling operations in the food and beverage industry. Compressed air is utilized to power pneumatic systems that control the movement and operation of packaging machinery, such as filling machines, capping machines, labeling equipment, and sealing devices. The precise and controlled delivery of compressed air ensures accurate and efficient packaging of products.

2. Cleaning and Sanitization:

Air compressors are employed for cleaning and sanitization purposes in food and beverage processing facilities. Compressed air is used to operate air-powered cleaning equipment, such as air blowguns, air-operated vacuum systems, and air knives. It helps remove debris, dust, and contaminants from production lines, equipment, and hard-to-reach areas. Additionally, compressed air is used for drying surfaces after cleaning and for applying sanitizing agents.

3. Cooling and Refrigeration:

In the food and beverage industry, air compressors are utilized in cooling and refrigeration systems. Compressed air is used to drive air compressors in refrigeration units, enabling the circulation of refrigerants and maintaining optimal temperatures for food storage and preservation. The controlled airflow provided by the compressors facilitates efficient cooling and refrigeration processes.

4. Aeration and Mixing:

Air compressors are used for aeration and mixing applications in the food and beverage industry. Compressed air is introduced into processes such as fermentation, dough mixing, and wastewater treatment. It helps in promoting oxygen transfer, enhancing microbial activity, and facilitating proper mixing of ingredients or substances, contributing to the desired quality and consistency of food and beverage products.

5. Pneumatic Conveying:

In food processing plants, air compressors are employed for pneumatic conveying systems. Compressed air is used to transport bulk materials such as grains, powders, and ingredients through pipes or tubes. It enables the gentle and efficient movement of materials without the need for mechanical conveyors, reducing the risk of product damage or contamination.

6. Quality Control and Testing:

Air compressors are utilized in quality control and testing processes within the food and beverage industry. Compressed air is used for leak testing of packaging materials, containers, and seals to ensure product integrity. It is also employed for spraying air or gases during sensory analysis and flavor testing.

7. Air Agitation:

In certain food and beverage production processes, air compressors are used for air agitation. Compressed air is introduced into tanks, mixing vessels, or fermentation tanks to create turbulence and promote mixing or chemical reactions. It aids in achieving consistent product quality and uniform distribution of ingredients or additives.

It is important to note that air compressors used in the food and beverage industry must meet strict hygiene and safety standards. They may require specific filtration systems, oil-free operation, and compliance with food safety regulations to prevent contamination or product spoilage.

By utilizing air compressors effectively, the food and beverage industry can benefit from improved productivity, enhanced product quality, and efficient processing operations.

air compressor

How are air compressors employed in the mining industry?

Air compressors play a crucial role in the mining industry, providing reliable and efficient power for various mining operations. Here are some common applications of air compressors in mining:

1. Exploration and Drilling:

Air compressors are used during exploration and drilling activities in the mining industry. Compressed air is used to power drilling rigs, pneumatic hammers, and other drilling equipment. The high-pressure air generated by the compressor helps in drilling boreholes, extracting core samples, and exploring potential mineral deposits.

2. Ventilation and Air Quality Control:

Air compressors are employed in underground mining to provide ventilation and control air quality. Compressed air is used to operate ventilation fans and air circulation systems, ensuring adequate airflow and removing harmful gases, dust, and fumes from the mining tunnels and work areas.

3. Material Conveyance:

In mining operations, air compressors are used for material conveyance. Pneumatic systems powered by air compressors are utilized to transport materials such as coal, ore, and other minerals. Compressed air is used to operate pneumatic conveyors, pumps, and material handling equipment, allowing for efficient and controlled movement of bulk materials.

4. Dust Suppression:

Air compressors are employed for dust suppression in mining areas. Compressed air is used to spray water or other suppressants to control dust generated during mining activities. This helps in maintaining a safe and healthy work environment, reducing the risks associated with dust inhalation and improving visibility.

5. Instrumentation and Control:

Air compressors are used for instrumentation and control purposes in mining operations. Compressed air is utilized to power pneumatic control systems, control valves, and actuators. These systems regulate the flow of fluids, control equipment movements, and ensure the proper functioning of various mining processes.

6. Explosive Applications:

In mining, air compressors are used for explosive applications. Compressed air is employed to power pneumatic tools used for rock fragmentation, such as rock drills and pneumatic breakers. The controlled power of compressed air enables safe and efficient rock breaking without the need for traditional explosives.

7. Maintenance and Repair:

Air compressors are essential for maintenance and repair activities in the mining industry. Compressed air is used for cleaning machinery, removing debris, and powering pneumatic tools for equipment maintenance and repair tasks. The versatility and portability of air compressors make them valuable assets in maintaining mining equipment.

It is important to note that different mining operations may have specific requirements and considerations when selecting and using air compressors. The size, capacity, and features of air compressors can vary based on the specific mining application and environmental conditions.

By utilizing air compressors effectively, the mining industry can benefit from increased productivity, improved safety, and efficient operation of various mining processes.

air compressor

What are the safety considerations when operating an air compressor?

Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:

1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.

2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.

3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.

4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.

5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.

6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.

7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.

8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.

9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.

10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.

By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.

China OEM 7.5kw 15kw 22kw Screw Air Compressor 380V/3pH/50Hz IP55 Direct Driven Factory Direct   air compressor priceChina OEM 7.5kw 15kw 22kw Screw Air Compressor 380V/3pH/50Hz IP55 Direct Driven Factory Direct   air compressor price
editor by CX 2023-11-10

China OEM Single Phase Mono Phase Screw Air Compressor Best-Selling Type, Favorable Price, Safe and Reliable with Best Sales

Product Description

Certifications

Product Description

 

High efficient*Combined with direct driven arrangement for superior energy efficiency
*Water seals and cools for ideal compression
*Optimal compression processes with the water cooling

 

Minimum service costs *Only air filter and water filter need maintenance
*No lubricant costs
*Fast and easy for minimal downtime

 

High reliability*Simple and robust design
* Low-speed direct drive, no high speed gears
*Low operating temperatures, no special coatings

High-quality air *Low air temperature, easy to dry and treat
*No coating on routers that can contaminate or pollute the air
*Class 0 air quality

 

Environmental safety*Low noise level
*Reduce energy consumption
*No oil discharge to the environment
 

Technical parameters

Model Max Working
Pressure
Capacity Motor Power Connection Dimension
(L*W*H)
Air Tank
bar psig L/min hp kw inch mm L
C5E 8 116 200-400 5 3.7 G1/2 1571*540*1035 100L
10 145 175-350
12.5 182 150-300
C6E 8 116 250-500 6 4.5 G1/2 1571*540*1035 100L
10 145 210-420
12.5 182 180-360
C7E 8 116 315-630 7 5.5 G1/2 1571*540*1035 100L
10 145 275-550
12.5 182 210-420
C10E 8 116 490-980 10 7.5 G1/2 1060*560*1270 160L
10 145 450-900
12.5 182 400-800

Company Profile

 

Packaging & Shipping

After Sales Service

FAQ

 

Q1: Why customer choose us?

O: CHINAMFG Technology Development Co, Ltd is a professional manufacturer for air compressor and after treatment equipment. We have more than 20 years experience in producing and exporting air compressor, air dryer and air filter.

 

Q2: Are you a manufacturer or trading company?

O: Our factory is located in ZheJiang China, we have research and develop center, advanced processing equipment, professional technicians, rich experience workers and after-sales team to offer good quality products and good service to our customers. We also can provide you the OEM&ODM service.

 

Q3: What’s your delivery time?

O: Generally 10 days, if urgently order, pls contact our sales in advance

 

Q4: How long is your air compressor warranty?

O: One year for the whole machine when the compressor leave our factory.

 

Q5: How long could your air compressor be used?

O: Generally, more than 10 years

 

Q6: What’s payment term?

O: T/T, L/C, Paypal and etc. Also we could accept USD, RMB, Euro and other currency (Pls contact our sales for more information

 

Q7: How about your customer service?

O: 24 hours on-line service available

 

Q8: How about your after-sales service?

O: 1. Provide customers with installation and commissioning online instructions.
2. Well-trained engineers available to overseas service
3. World wide agents and after service available

 

After-sales Service: 1 Year
Warranty: 1 Year
Lubrication Style: Lubricated
Samples:
US$ 1780/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

How are air compressors utilized in pharmaceutical manufacturing?

Air compressors play a crucial role in pharmaceutical manufacturing, where they are utilized for various critical applications. The pharmaceutical industry requires a reliable source of clean and compressed air to ensure the safety, efficiency, and quality of its processes. Here’s an overview of how air compressors are utilized in pharmaceutical manufacturing:

1. Manufacturing Processes:

Air compressors are used in numerous manufacturing processes within the pharmaceutical industry. Compressed air is employed for tasks such as mixing and blending of ingredients, granulation, tablet compression, coating, and encapsulation of pharmaceutical products. The controlled delivery of compressed air facilitates precise and consistent manufacturing processes, ensuring the production of high-quality pharmaceuticals.

2. Instrumentation and Control Systems:

Pharmaceutical manufacturing facilities rely on compressed air for powering instrumentation and control systems. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control temperature and pressure, and automate various processes. The clean and dry nature of compressed air makes it ideal for maintaining the integrity and accuracy of these critical control mechanisms.

3. Packaging and Filling:

Air compressors are employed in pharmaceutical packaging and filling processes. Compressed air is used to power machinery and equipment for bottle cleaning, labeling, capping, and sealing of pharmaceutical products. Compressed air provides the necessary force and precision for efficient and reliable packaging, ensuring product safety and compliance.

4. Cleanroom Environments:

Pharmaceutical manufacturing often takes place in controlled cleanroom environments to prevent contamination and maintain product quality. Air compressors are used to supply clean and filtered compressed air to these cleanrooms, ensuring a controlled and sterile environment for the production of pharmaceuticals. Compressed air is also utilized in cleanroom air showers and air curtains for personnel and material decontamination.

5. Laboratory Applications:

In pharmaceutical laboratories, air compressors are utilized for various applications. Compressed air is used in laboratory instruments, such as gas chromatographs, mass spectrometers, and other analytical equipment. It is also employed in clean air cabinets, fume hoods, and laminar flow benches, providing a controlled and clean environment for testing, analysis, and research.

6. HVAC Systems:

Air compressors are involved in heating, ventilation, and air conditioning (HVAC) systems in pharmaceutical manufacturing facilities. Compressed air powers the operation of HVAC controls, dampers, actuators, and air handling units, ensuring proper air circulation, temperature control, and environmental conditions in various manufacturing areas.

By utilizing air compressors in pharmaceutical manufacturing, the industry can maintain strict quality standards, enhance operational efficiency, and ensure the safety and efficacy of pharmaceutical products.

air compressor

How do you troubleshoot common air compressor problems?

Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:

1. No Power:

  • Check the power source and ensure the compressor is properly plugged in.
  • Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
  • Verify that the compressor’s power switch or control panel is turned on.

2. Low Air Pressure:

  • Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
  • Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
  • Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.

3. Excessive Noise or Vibration:

  • Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
  • Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
  • Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.

4. Air Leaks:

  • Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
  • Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
  • Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.

5. Excessive Moisture in Compressed Air:

  • Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
  • Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
  • Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.

6. Motor Overheating:

  • Ensure the compressor’s cooling system is clean and unobstructed.
  • Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
  • Verify that the compressor is not being operated in an excessively hot environment.
  • Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
  • Consider using a thermal overload protector to prevent the motor from overheating.

If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.

air compressor

Are there air compressors specifically designed for high-pressure applications?

Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:

1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.

2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.

3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.

4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:

  • Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
  • Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
  • Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
  • Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
  • Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.

5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.

When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.

High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.

China OEM Single Phase Mono Phase Screw Air Compressor Best-Selling Type, Favorable Price, Safe and Reliable   with Best SalesChina OEM Single Phase Mono Phase Screw Air Compressor Best-Selling Type, Favorable Price, Safe and Reliable   with Best Sales
editor by CX 2023-11-10