Tag Archives: price air compressor

China Standard Double Stage Rotary Vane Vacuum Pump Air Compressor Two Stage CHINAMFG Two Stage 60HP Permanent Magnetic Screw Air Compressor 45kw air compressor price

Product Description

MODEL MAXIMUM WORKING PRESSURE FREE AIR DELIVERY* OF UNIT AT WORKING PRESSURE MOTOR NOISE LEVEL AIR OUTLET DISCHARGE SIZE WEIGHT DIMENSIONS
Bar PSI l/s m3/min CFM kW HP dBA   KG L X W X H
(mm)
MCS-5.5 7 102 14 0.85 30 5.5 7.5 65±2 G3/4 240 800 x 720 x
950
8 116 13 0.78 28
10 145 11 0.65 23
12 174 9 0.55 20
MCS-7.5 7 102 20 1.20 43 7.5 10 65±2 G3/4 250 800 x 720 x
950
8 116 18 1.10 39
10 145 15 0.90 32
12 174 13 0.75 27
MCS-11 7 102 28 1.65 59 11 15 70±2 G3/4 350 950 x 800 x
1160
8 116 25 1.50 54
10 145 22 1.30 46
12 174 18 1.10 39
MCS-15 7 102 42 2.50 89 15 20 70±2 G3/4 400 950 x 800 x
1160
8 116 38 2.30 82
10 145 35 2.10 75
12 174 32 1.90 68
MCS-18.5 7 102 53 3.20 114 18.5 25 72±2 G1 550 1150 x 900 x
1380
8 116 50 3.00 107
10 145 45 2.70 96
12 174 40 2.40 86
MCS-22 7 102 63 3.80 136 22 30 73±2 G1 600 1150 x 900 x
1380
8 116 60 3.60 129
10 145 53 3.20 114
12 174 45 2.70 96
MCS-30 7 102 88 5.30 189 30 40 74±2 G1 650 1150 x 900 x
1380
8 116 83 5.00 179
10 145 75 4.50 161
12 174 67 4.00 143
MCS-37 7 102 113 6.80 243 37 50 74±2 G1 1/2 800 1320 x 1000 x
1500
8 116 103 6.20 221
10 145 93 5.60 200
12 174 83 5.00 179
MCS-45 7 102 123 7.40 264 45 60 74±2 G1 1/2 900 1320 x 1000 x
1500
8 116 117 7.00 250
10 145 103 6.20 221
12 174 93 5.60 200
MCS-55 7 102 167 10.00 357 55 75 75±2 G2 1300 1600 x 1150 x
1460
8 116 153 9.20 329
10 145 142 8.50 304
12 174 127 7.60 271
MCS-75 7 102 223 13.40 479 75 100 75±2 G2 1500 1800 x 1250 x
1670
8 116 210 12.60 450
10 145 187 11.20 400
12 174 167 10.00 357
MCS-90 7 102 268 16.10 575 90 120 75±2 G2 1700 1800 x 1250 x
1670
8 116 250 15.00 536
10 145 230 13.80 493
12 174 210 12.60 450

MODEL MAXIMUM WORKING PRESSURE FREE AIR DELIVERY* OF UNIT AT WORKING PRESSURE MOTOR NOISE LEVEL AIR OUTLET DISCHARGE SIZE WEIGHT DIMENSIONS
Bar PSI l/s m3/min CFM kW HP dBA   KG L X W X H
(mm)
MCS-110 7 102 350 21.00 750 110 150 75±2 DN65 2700 2700 x 1470 x
1840
8 116 330 19.80 707
10 145 290 17.40 621
12 174 247 14.80 529
MCS-132 7 102 423 25.40 907 132 175 75±2 DN65 2900 2700 x 1470 x
1840
8 116 387 23.20 829
10 145 342 20.50 732
12 174 290 17.40 621
MCS-160 7 102 478 28.70 1571 160 220 75±2 DN65 3200 2700 x 1470 x
1840
8 116 460 27.60 986
10 145 410 24.60 879
12 174 358 21.50 768
MCS-185 7 102 533 32.00 1143 185 250 78±2 DN80 3500 3200 x 2000 x
2050
8 116 507 30.40 1086
10 145 457 27.40 979
12 174 413 24.80 886
MCS-220 7 102 600 36.00 1286 220 300 78±2 DN80 4000 3200 x 2000 x
2050
8 116 572 34.30 1225
10 145 503 30.20 1079
12 174 462 27.70 989
MCS-250 7 102 700 42.00 1500 250 350 78±2 DN100 4500 3200 x 2000 x
2050
8 116 675 40.50 1446
10 145 637 38.20 1364
12 174 575 34.50 1232
MCS-315 7 102 850 51.00 1821 315 430 80±2 DN110 6000 3500 x 2000 x
2050
8 116 837 50.20 1793
10 145 742 44.50 1589
12 174 658 39.50 1411
MCS-355 7 102 1067 64.00 2286 355 480 82±2 DN110 6500 3500 x 2000 x
2050
8 116 1017 61.00 2179
10 145 942 56.50 2018
12 174 817 49.00 1750
MCS-400 7 102 1187 71.20 2543 400 540 82±2 DN120 7200 3800 x 2000 x
2050
8 116 1135 68.10 2432
10 145 1047 62.80 2243
12 174 870 52.20 1864

Type of Driving: Belt Driven/Direct Driven
Type of Cooling: Air Cooling/Water Cooling
Motor Efficiency Class: IE5/IE4/IE3/IE2 as per your required
Motor Protection Class: IP23/IP54/IP55 or as per your required

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

What are the advantages of using an air compressor in construction?

Using an air compressor in construction offers numerous advantages that contribute to increased efficiency, productivity, and versatility. Here are some key benefits of using air compressors in construction:

  • Powering Pneumatic Tools: Air compressors are commonly used to power a wide range of pneumatic tools on construction sites. Tools such as jackhammers, nail guns, impact wrenches, drills, and sanders can be operated using compressed air. Pneumatic tools are often preferred due to their lightweight, compact design and ability to deliver high torque or impact force.
  • Efficient Operation: Air compressors provide a continuous and reliable source of power for pneumatic tools, allowing for uninterrupted operation without the need for frequent battery changes or recharging. This helps to maintain a smooth workflow and reduces downtime.
  • Portability: Many construction air compressors are designed to be portable, featuring wheels or handles for easy maneuverability on job sites. Portable air compressors can be transported to different areas of the construction site as needed, providing power wherever it is required.
  • Versatility: Air compressors are versatile tools that can be used for various applications in construction. Apart from powering pneumatic tools, they can also be utilized for tasks such as inflating tires, cleaning debris, operating air-operated pumps, and powering air horns.
  • Increased Productivity: The efficient operation and power output of air compressors enable construction workers to complete tasks more quickly and effectively. Pneumatic tools powered by air compressors often offer higher performance and faster operation compared to their electric or manual counterparts.
  • Cost Savings: Air compressors can contribute to cost savings in construction projects. Pneumatic tools powered by air compressors are generally more durable and have longer lifespans compared to electric tools. Additionally, since air compressors use compressed air as their power source, they do not require the purchase or disposal of batteries or fuel, reducing ongoing operational expenses.
  • Reduced Electrocution Risk: Construction sites can be hazardous environments, with the risk of electrocution from electrical tools or equipment. By utilizing air compressors and pneumatic tools, the reliance on electrical power is minimized, reducing the risk of electrocution accidents.

It is important to select the appropriate air compressor for construction applications based on factors such as required air pressure, volume, portability, and durability. Regular maintenance, including proper lubrication and cleaning, is crucial to ensure the optimal performance and longevity of air compressors in construction settings.

In summary, the advantages of using air compressors in construction include powering pneumatic tools, efficient operation, portability, versatility, increased productivity, cost savings, and reduced electrocution risk, making them valuable assets on construction sites.

air compressor

Are there differences between single-stage and two-stage air compressors?

Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:

Compression Stages:

The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.

Compression Process:

In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.

Pressure Output:

The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.

Efficiency:

Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.

Intercooling:

Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.

Applications:

The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.

It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.

In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.

air compressor

What is the difference between a piston and rotary screw compressor?

Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:

1. Operating Principle:

  • Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
  • Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.

2. Compression Method:

  • Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
  • Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.

3. Efficiency:

  • Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
  • Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.

4. Noise Level:

  • Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
  • Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.

5. Maintenance:

  • Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
  • Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.

6. Size and Portability:

  • Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
  • Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.

These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.

China Standard Double Stage Rotary Vane Vacuum Pump Air Compressor Two Stage CHINAMFG Two Stage 60HP Permanent Magnetic Screw Air Compressor 45kw   air compressor priceChina Standard Double Stage Rotary Vane Vacuum Pump Air Compressor Two Stage CHINAMFG Two Stage 60HP Permanent Magnetic Screw Air Compressor 45kw   air compressor price
editor by CX 2024-02-20

China factory 25L 8bar 1.5HP 1.1kw Direct Driven Air Compressor (ZFL25-A) air compressor price

Product Description

Direct Driven Air Compressor(ZFL25-A)
Specification:

Model  ZFL25-A
Motor  1.5HP/1.1KW-2P,three phase
Tank  25L/6.3Gal
Pressure  8BAR/115PSI
Capacity  137L/min/4.8CFM
Speed  2840RPM
Piston Diameter x Qty.  42mm*1pc
Weight  25kg
L*W*H 580*275*580mm

Packing

Brown Carton Box

 

Features:
1. Pressure cast iron pump, can be adapted to use large horsepower;
2. The best choice for a foundry, steel factory, wood factory, cement plant, hospital.
3. Customers could choose different type of compressor pump with different size of  air tank or different motor power.
4. Low noise.
5.1 year warranty.

Frequently Asked Questions:
1.Are you the manufacturer or trading company?
   We are the manufacturer.
2.Where is your factory?
   It is located in HangZhou City,ZHangZhoug Province,China.
3.What’s the terms of trade?
   FOB,CFR,CIF or EXW are all acceptable.
4.What’s the terms of payment?
   T/T,L/C at sight or cash.
5.What’s the lead time?
   About 25 days after receiving the deposit on our bank account(for a container).
6.Do you accept sample order?
   Yes,we accept.
7.What about the cost of sample?
   You have to pay the freight charge.But the cost of product could be refundable,if you will purchase 1×40’HQ container in the future.

Company introduction:
   HangZhou City Guangda(Ouye) Electromechanical Co.,Ltd: specializes in all kinds of air compressors;-such as:belt driven air compressor,direct driven air compressor,oil free air compressor,gasoline air compressor and diesel air compressor.cutting machines;sitting board machines;air compressor pumps;access series and so on.

      We introduce domestic and overseas advanced technology to make high-quality products.Our products have been sold to the United States, UK,Poland, Brazil,Russia, South Korea, Australia,Chile,Argentina,Dubai,Banglandesh,Turkey,Moldova,and so on .They have a good reputation at home and abroad. We are both professional manufacturer and exporter , so our products are high quality with competitive price.

Office:

 Workshops:

Looking CHINAMFG to establishing sincere and long-term business relationships with you. Should any of these items be of interest to you,pls feel free to contact Ms Sisily.
 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Lubrication Style: Lubricated
Cooling System: Air Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Vertical
Structure Type: Closed Type
Compress Level: Single-Stage
Customization:
Available

|

air compressor

What are the differences between stationary and portable air compressors?

Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:

1. Mobility:

The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.

2. Power Source:

Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.

3. Tank Capacity:

Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.

4. Performance and Output:

The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.

5. Noise Level:

Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.

6. Price and Cost:

Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.

When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.

air compressor

Can air compressors be used for medical and dental applications?

Yes, air compressors can be used for various medical and dental applications. Compressed air is a reliable and versatile utility in healthcare settings, providing power for numerous devices and procedures. Here are some common applications of air compressors in medical and dental fields:

1. Dental Tools:

Air compressors power a wide range of dental tools and equipment, such as dental handpieces, air syringes, air scalers, and air abrasion devices. These tools rely on compressed air to generate the necessary force and airflow for effective dental procedures.

2. Medical Devices:

Compressed air is used in various medical devices and equipment. For example, ventilators and anesthesia machines utilize compressed air to deliver oxygen and other gases to patients. Nebulizers, used for respiratory treatments, also rely on compressed air to convert liquid medications into a fine mist for inhalation.

3. Laboratory Applications:

Air compressors are used in medical and dental laboratories for various purposes. They power laboratory instruments, such as air-driven centrifuges and sample preparation equipment. Compressed air is also used for pneumatic controls and automation systems in lab equipment.

4. Surgical Tools:

In surgical settings, compressed air is employed to power specialized surgical tools. High-speed air-driven surgical drills, saws, and bone-cutting instruments are commonly used in orthopedic and maxillofacial procedures. Compressed air ensures precise control and efficiency during surgical interventions.

5. Sterilization and Autoclaves:

Compressed air is essential for operating sterilization equipment and autoclaves. Autoclaves use steam generated by compressed air to sterilize medical instruments, equipment, and supplies. The pressurized steam provides effective disinfection and ensures compliance with rigorous hygiene standards.

6. Dental Air Compressors:

Specialized dental air compressors are designed specifically for dental applications. These compressors have features such as moisture separators, filters, and noise reduction mechanisms to meet the specific requirements of dental practices.

7. Air Quality Standards:

In medical and dental applications, maintaining air quality is crucial. Compressed air used in healthcare settings must meet specific purity standards. This often requires the use of air treatment systems, such as filters, dryers, and condensate management, to ensure the removal of contaminants and moisture.

8. Compliance and Regulations:

Medical and dental facilities must comply with applicable regulations and guidelines regarding the use of compressed air. These regulations may include requirements for air quality, maintenance and testing procedures, and documentation of system performance.

It is important to note that medical and dental applications have specific requirements and standards. Therefore, it is essential to choose air compressors and associated equipment that meet the necessary specifications and comply with industry regulations.

air compressor

What is the role of air compressor tanks?

Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:

1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.

2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.

3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.

4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.

5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.

6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.

Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.

China factory 25L 8bar 1.5HP 1.1kw Direct Driven Air Compressor (ZFL25-A)   air compressor priceChina factory 25L 8bar 1.5HP 1.1kw Direct Driven Air Compressor (ZFL25-A)   air compressor price
editor by CX 2024-02-20

China best High technology Air-cooled Air compressor for truck air compressor price

Product Description

Product Description

 
 

Item Model BDW-6/2 BDW-7/2 BDW-8/2 BDW-9/2 BDW-10/2 BDW-10/2-S BDW-12/2-S BDW-16/2-S
Discharge volume M3/min 6 7 8 9 10 10 12 16
Nominal exhaust pressure MPa 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Shaft power Kw ≤25.5 ≤29 ≤33 ≤35 ≤40 ≤40 ≤44 ≤56
Maximum speed R/min 1250 1200 1150 1100 1100 1000 1000 950
Continuous operation time Min ≤60 ≤60 ≤60 ≤60 ≤60 ≤60 ≤60 ≤60
Keep torque N·n 300 300 400 400 400 400 400 400
Inspiratory temperature ºC ≤40 ≤40 ≤40 ≤40 ≤40 ≤40 ≤40 ≤40
Exhaust temperature ºC ≤200 ≤200 ≤200 ≤200 ≤200 ≤200 ≤200 ≤200
Machine quality Kg 190 195 209 216 230 366 376 430

OUR FACTORY

FAQ

Q:How about the warranty of components and parts?
A:3 months.

Q:Do you have ISO certificate?
A:Yes , we have,please contact us to get our certificates.
 
Q:How about the delivery time?
A: Most of our trucks have stock ,we can deliver to you within 7 days, if specially ordered , normally we need around 30 days for production
 
Q: How many units of truck does your factory produce per year?
A:Almost 100000 units.Nearly 8500 units per month.
 
Q: How do you control the quality of product?
A:Our Factory has standard production workshop,gets ISO CCC BV certificates,our workers are well trained. Every unit of product undergoes a rigorous inspection process.
 
Q: How about your product after-sales service system?
A:Our main export countries have accepted after-sales 
service,some countries use the third party service.
 
Q: Do you accept custom order? What’s is your MOQ order?
A:Yes, we do, our MOQ is 1 unit.
 
Q: What’s the payment terms?
A:By T/T or L/C at sight.
 
Q: How about shipment?
A:20FT container, 40FT container,40FT high container,
open-top container,flat bed container,Ro-Ro ship or bulk 
ship according to the size the products.
 
Q:Which country do you have exported to?
A:We have exported to More than 60 countries and regions in Eastern Europe, North Africa, Southeast Asia and South America. /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Classification: Variable Capacity
Job Classification: Reciprocating
Transmission Power: Turbine
Cooling Method: Air-cooled
Cylinder Arrangement Mode: Duplex
Cylinder Stage: Single Stage
Samples:
US$ 6.5/Piece
1 Piece(Min.Order)

|
Request Sample

air compressor

What is the role of air compressors in power generation?

Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:

1. Combustion Air Supply:

Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.

2. Instrumentation and Control:

Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.

3. Cooling and Ventilation:

In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.

4. Cleaning and Maintenance:

Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.

5. Pneumatic Tools and Equipment:

In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.

6. Nitrogen Generation:

Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.

7. Start-up and Emergency Systems:

Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.

Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.

air compressor

How does the horsepower of an air compressor affect its capabilities?

The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:

Power Output:

The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.

Air Pressure:

The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.

Air Volume:

In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.

Duty Cycle:

The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.

Size and Portability:

It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.

When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.

Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.

air compressor

Can air compressors be used for automotive applications?

Yes, air compressors can be used for various automotive applications and are commonly found in automotive repair shops, garages, and even in some vehicles. Here are some automotive applications where air compressors are frequently utilized:

1. Tire Inflation: Air compressors are commonly used to inflate tires in automotive applications. They provide a convenient and efficient way to inflate tires to the recommended pressure, ensuring optimal tire performance, fuel efficiency, and safety.

2. Air Tools: Air compressors power a wide range of pneumatic tools used in automotive repair and maintenance. These tools include impact wrenches, ratchet wrenches, air hammers, pneumatic drills, and sanders. Air-powered tools are favored for their high torque and power-to-weight ratio, making them suitable for heavy-duty automotive tasks.

3. Spray Painting: Air compressors are commonly used in automotive painting applications. They power airbrushes and spray guns that are used to apply paint, primer, and clear coats. Air compressors provide the necessary air pressure to atomize the paint and deliver a smooth and even finish.

4. Brake System Maintenance: Air compressors play a crucial role in maintaining and diagnosing automotive brake systems. They are used to pressurize the brake lines, allowing for proper bleeding of the system and detection of leaks or faults.

5. Suspension Systems: Some automotive suspension systems, such as air suspensions, rely on air compressors to maintain the desired air pressure in the suspension components. The compressor inflates or deflates the suspension as needed to provide a comfortable ride and optimal handling.

6. Cleaning and Dusting: Air compressors are used for cleaning automotive parts, blowing away dust and debris, and drying surfaces. They provide a high-pressure stream of air that effectively cleans hard-to-reach areas.

7. Air Conditioning Systems: Air compressors are a key component in automotive air conditioning systems. They compress and circulate refrigerant, allowing the system to cool and dehumidify the air inside the vehicle.

When using air compressors for automotive applications, it’s important to consider the specific requirements of the task at hand. Ensure that the air compressor has the necessary pressure and capacity to meet the demands of the application. Additionally, use appropriate air hoses, fittings, and tools that are compatible with the compressor’s output.

Overall, air compressors are versatile and valuable tools in the automotive industry, providing efficient power sources for a wide range of applications, from tire inflation to powering pneumatic tools and supporting various automotive systems.

China best High technology Air-cooled Air compressor for truck   air compressor priceChina best High technology Air-cooled Air compressor for truck   air compressor price
editor by CX 2024-02-10

China factory Made in China 6m3/Min Screw Type 37kw 50HP Air Compressor air compressor price

Product Description

4kw~350kw Screw Air Compressors
Made in China 380V 220V Rotary Screw 15HP 11kw Air Compressor

1. Pictures 

      

2. Technical data

Type SSD-15A SSD-20A SSD-25A SSD-30A SSD-50A SSD-75A
Motor power Kw/HP 11/15 15/20 18.5/25 22/30 37/50 55/75
Air Volume (m3/m)/MPa 1.65/0.7 2.25/0.7 3.22/0.7 3.6/0.7 6.58/0.7 10.8/0.7
1.53/0.8 2.03/0.8 3.01/0.8 3.56/0.8 6.26/0.8 10.1/0.8
1.32/1 1.82/1 2.52/1 3.07/1 5.8/1 8.5/1
1.1/1.2 1.55/1.2 2.3/1.2 2.84/1.2 5.06/1.2 7.69/1.2
Cooling mode Air cooled Air cooled Air cooled Air cooled Air cooled Air cooled
Drive mode Directly connected
Starting mode Y-△ Y-△ Y-△ Y-△ Y-△ Y-△
L×W×H
(mm)
L 950 950 1150 1250 1500 2045
W 800 800 900 750 970 1250
H 1140 1140 1260 1110 1340 1705
Net weight Kg 400 440 510 550 770 1750
Noise dB(A) 63±2 63±2 63±2 63±2 63±2 65±2
Diameter of outlet pipe G3/4″ G3/4″ G11/4″ G11/4″ G11/2″ G2″

SSD-100A SSD-120A SSD-150A SSD-175A SSD-200A SSD-250A SSD-300A SSD-350A
75/100 90/120 110/150 132/175 160/200 185/250 220/300 250/350
13.5/0.7 16.2/0.7 21.6/0.7 25.2/0.7 28.7/0.7 32.5/0.7 36.8/0.7 42.7/0.7
12.7/0.8 15.2/0.8 20.1/0.8 24/0.8 27.6/0.8 30.8/0.8 34.7/0.8 40.8/0.8
11.3/1 14.3/1 17.5/1 21/1 25.3/1 28.2/1 30.8/1 38.1/1
10/1.2 12.9/1.2 16/1.2 18.3/1.2 22.4/1.2 25.1/1.2 28.9/1.2 34.9/1.2
Air cooled Air cooled Air cooled Air cooled Air cooled Air cooled Air cooled Air cooled
Directly connected
Y-△ Y-△ Y-△ Y-△ Y-△ Y-△ Y-△ Y-△
2045 2329 2578 2578 2856 2856 3092 3092
1250 1516 1656 1656 1898 1898 1944 1944
1705 1745 1920 1920 1895 1895 2143 2143
1820 2200 2950 3550 3880 4050 4700 5100
68±2 68±2 68±2 72±2 72±2 72±2 76±2 76±2
G2″ DN65 DN65 DN65 DN80 DN80 DN80 DN80

3. Specifications 

No.  Part Name Manufacturer or Brand
1 Air end Baosi
2 Pressure sensor Yishun, HangZhou
3 Temperature sensor Yishun, HangZhou
4 Intake valve Red star, HangZhou
5 Starting panel Schneider
6 Frequency converter Zhongchen
7 PLC Controller (English) PLOT, HangZhou
8 Contactor Schneider
9 Motor Xihu (West Lake) Dis.n, Lihao
10 Air filter HD
11 Oil filter HD
12 Oil-air separator element HD
13 Min. Pressure valve Red star, HangZhou
14 Air Cooler Yaqi
15 Oil tank Xihu (West Lake) Dis. vessel
16 Safety valve HangZhou
17 Fan motor Shiyibai

4. Features
Less parts, no consumables
Reliable CHINAMFG running, which is applied to industries as metallurgy, mine, mechanical, construction, food etc
Low noise and low running cost
Our screw compressors apply imported bearing, rotor is balance tested good by balance machine, there is little vibration and low noise
Low oil consumption
The oil-moisture separator is key part for screw compressor, CHINAMFG CHINAMFG applies most advanced separator, technical data is controlled reliable, oil consumption is controlled under 3ppm
Intelligent micro computer control technology is realized for fully monitored and instructed by operators, and it can runs with no-man operation due to remote control. The instruction and data is displayed on the screen panel, and it can detects faults automatically and gives an alarm, and adjust air flow automatically
Block
German style block, 0 vibration, low noise, big rotor, low RPM, direct driven. Rotor is 5: 6 unbalanced line high efficiency…
Cooler: 
Cooler is assembled with filtration screen which keeps clean in the cooler
Motor: 
High performance motor ensures the CHINAMFG operated in bad environments
Bearing: 
Sweden CHINAMFG bearing, anti-friction anti-corrosion
Pipes: 
European material high temperature 135celsius and high pressure resistance, no leakage /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 24/7
Warranty: 3 Years
Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Vertical
Customization:
Available

|

air compressor

Can air compressors be used for cleaning and blowing dust?

Yes, air compressors can be effectively used for cleaning and blowing dust in various applications. Here’s how air compressors are utilized for these purposes:

1. Cleaning Machinery and Equipment:

Air compressors are commonly used for cleaning machinery and equipment in industries such as manufacturing, automotive, and construction. Compressed air is directed through a nozzle or blowgun attachment to blow away dust, debris, and other contaminants from surfaces, crevices, and hard-to-reach areas. The high-pressure air effectively dislodges and removes accumulated dust, helping to maintain equipment performance and cleanliness.

2. Dusting Surfaces:

Air compressors are also employed for dusting surfaces in various settings, including homes, offices, and workshops. The compressed air can be used to blow dust off furniture, shelves, electronic equipment, and other objects. It provides a quick and efficient method of dusting, especially for intricate or delicate items where traditional dusting methods may be challenging.

3. Cleaning HVAC Systems:

Air compressors are utilized for cleaning HVAC (Heating, Ventilation, and Air Conditioning) systems. The compressed air can be used to blow dust, dirt, and debris from air ducts, vents, and cooling coils. This helps improve the efficiency and air quality of HVAC systems, preventing the buildup of contaminants that can affect indoor air quality.

4. Blowing Dust in Workshops:

In workshops and garages, air compressors are often used to blow dust and debris from workbenches, power tools, and work areas. Compressed air is directed to blow away loose particles and maintain a clean and safe work environment. This is particularly useful in woodworking, metalworking, and other trades where dust and debris can accumulate during the manufacturing or fabrication processes.

5. Cleaning Electronics and Computer Equipment:

Air compressors are employed for cleaning electronics and computer equipment. The compressed air is used to blow dust and debris from keyboards, computer cases, circuit boards, and other electronic components. It helps in preventing overheating and maintaining the proper functioning of sensitive electronic devices.

6. Industrial Cleaning Applications:

Air compressors find extensive use in industrial cleaning applications. They are employed in industrial settings, such as factories and warehouses, for cleaning large surfaces, production lines, and equipment. Compressed air is directed through specialized cleaning attachments or air-operated cleaning systems to remove dust, dirt, and contaminants efficiently.

When using air compressors for cleaning and blowing dust, it is important to follow safety precautions and guidelines. The high-pressure air can cause injury if directed towards the body or sensitive equipment. It is advisable to wear appropriate personal protective equipment, such as safety glasses and gloves, and ensure that the air pressure is regulated to prevent excessive force.

Overall, air compressors provide a versatile and effective solution for cleaning and blowing dust in various applications, offering a convenient alternative to traditional cleaning methods.

air compressor

What are the environmental considerations when using air compressors?

When using air compressors, there are several environmental considerations to keep in mind. Here’s an in-depth look at some of the key factors:

Energy Efficiency:

Energy efficiency is a crucial environmental consideration when using air compressors. Compressing air requires a significant amount of energy, and inefficient compressors can consume excessive power, leading to higher energy consumption and increased greenhouse gas emissions. It is important to choose energy-efficient air compressors that incorporate features such as Variable Speed Drive (VSD) technology and efficient motor design, as they can help minimize energy waste and reduce the carbon footprint.

Air Leakage:

Air leakage is a common issue in compressed air systems and can contribute to energy waste and environmental impact. Leaks in the system result in the continuous release of compressed air, requiring the compressor to work harder and consume more energy to maintain the desired pressure. Regular inspection and maintenance of the compressed air system to detect and repair leaks can help reduce air loss and improve overall energy efficiency.

Noise Pollution:

Air compressors can generate significant noise levels during operation, which can contribute to noise pollution. Prolonged exposure to high noise levels can have detrimental effects on human health and well-being and can also impact the surrounding environment and wildlife. It is important to consider noise reduction measures such as sound insulation, proper equipment placement, and using quieter compressor models to mitigate the impact of noise pollution.

Emissions:

While air compressors do not directly emit pollutants, the electricity or fuel used to power them can have an environmental impact. If the electricity is generated from fossil fuels, the associated emissions from power plants contribute to air pollution and greenhouse gas emissions. Choosing energy sources with lower emissions, such as renewable energy, can help reduce the environmental impact of operating air compressors.

Proper Waste Management:

Proper waste management is essential when using air compressors. This includes the appropriate disposal of compressor lubricants, filters, and other maintenance-related materials. It is important to follow local regulations and guidelines for waste disposal to prevent contamination of soil, water, or air and minimize the environmental impact.

Sustainable Practices:

Adopting sustainable practices can further reduce the environmental impact of using air compressors. This can include implementing preventive maintenance programs to optimize performance, reducing idle time, and promoting responsible use of compressed air by avoiding overpressurization and optimizing system design.

By considering these environmental factors and taking appropriate measures, it is possible to minimize the environmental impact associated with the use of air compressors. Choosing energy-efficient models, addressing air leaks, managing waste properly, and adopting sustainable practices can contribute to a more environmentally friendly operation.

air compressor

How does an air compressor work?

An air compressor works by using mechanical energy to compress and pressurize air, which is then stored and used for various applications. Here’s a detailed explanation of how an air compressor operates:

1. Air Intake: The air compressor draws in ambient air through an intake valve or filter. The air may pass through a series of filters to remove contaminants such as dust, dirt, and moisture, ensuring the compressed air is clean and suitable for its intended use.

2. Compression: The intake air enters a compression chamber, typically consisting of one or more pistons or a rotating screw mechanism. As the piston moves or the screw rotates, the volume of the compression chamber decreases, causing the air to be compressed. This compression process increases the pressure and reduces the volume of the air.

3. Pressure Build-Up: The compressed air is discharged into a storage tank or receiver where it is held at a high pressure. The tank allows the compressed air to be stored for later use and helps to maintain a consistent supply of compressed air, even during periods of high demand.

4. Pressure Regulation: Air compressors often have a pressure regulator that controls the output pressure of the compressed air. This allows the user to adjust the pressure according to the requirements of the specific application. The pressure regulator ensures that the compressed air is delivered at the desired pressure level.

5. Release and Use: When compressed air is needed, it is released from the storage tank or receiver through an outlet valve or connection. The compressed air can then be directed to the desired application, such as pneumatic tools, air-operated machinery, or other pneumatic systems.

6. Continued Operation: The air compressor continues to operate as long as there is a demand for compressed air. When the pressure in the storage tank drops below a certain level, the compressor automatically starts again to replenish the compressed air supply.

Additionally, air compressors may include various components such as pressure gauges, safety valves, lubrication systems, and cooling mechanisms to ensure efficient and reliable operation.

In summary, an air compressor works by drawing in air, compressing it to increase its pressure, storing the compressed air, regulating the output pressure, and releasing it for use in various applications. This process allows for the generation of a continuous supply of compressed air for a wide range of industrial, commercial, and personal uses.

China factory Made in China 6m3/Min Screw Type 37kw 50HP Air Compressor   air compressor priceChina factory Made in China 6m3/Min Screw Type 37kw 50HP Air Compressor   air compressor price
editor by CX 2024-02-09

China manufacturer Trade Price Air Compressor Special Compressor Parts Adtv-S Automatic Drain Valve best air compressor

Product Description

Our company specializes in the research and development, manufacturing, distribution of mechanical equipment, to filter production lines as the focus, 18 years with a skilled, excellent after-sales service team.Has passed various quality certifications, always adhere to the principle of “quality is everything”, and always provide the best service for global customers. Our main compressor products are oil filters, oil separator filter and air filters, covering power plants, paper mills, petrochemical, textile, railway, cement, electronics and otherand all kinds of engineering machines filter industries. Most of our products are exported to the United States, East South Asia and Africa, which are 26 countries. We at Fluid Paradise are committed to providing filters at competitive prices, with superior quality and timely delivery. We sincerely hope to establish stable and strategic partnership with all countries in the world.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 6 Month
Warranty: 6 Month
Lubrication Style: Lubricated
Cooling System: Water Cooling
Power Source: AC Power
Cylinder Position: Vertical
Customization:
Available

|

air compressor

What are the differences between stationary and portable air compressors?

Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:

1. Mobility:

The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.

2. Power Source:

Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.

3. Tank Capacity:

Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.

4. Performance and Output:

The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.

5. Noise Level:

Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.

6. Price and Cost:

Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.

When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.

air compressor

What is the energy efficiency of modern air compressors?

The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors:

Variable Speed Drive (VSD) Technology:

Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors.

Air Leakage Reduction:

Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings.

Efficient Motor Design:

The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption.

Optimized Control Systems:

Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation.

Air Storage and Distribution:

Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste.

Energy Management and Monitoring:

Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices.

It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application.

Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.

air compressor

What is the impact of tank size on air compressor performance?

The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size:

1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods.

2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan.

3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment.

4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance.

5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance.

It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size.

Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.

China manufacturer Trade Price Air Compressor Special Compressor Parts Adtv-S Automatic Drain Valve   best air compressorChina manufacturer Trade Price Air Compressor Special Compressor Parts Adtv-S Automatic Drain Valve   best air compressor
editor by CX 2024-02-06

China supplier Electric Silent 7bar 7.5kw Screw Air Compressor with CE air compressor price

Product Description

Advantage of the SEA PM serises  air compressor

1.Low nosie
2.Good prices factory wholesale
3.We can provide OEM/ODM,customized service
4.Saving power type air compressor
5.FIRST TIME PURCHASE OF FREE GIFTS

 

PRODUCTS PARAMETER

—–VERDES Technology Co., Ltd——

model

power

PRESSURE

DISCHARGE CAPACITY

OUTLET

L

w

H

WEIGHT

VDS10A

7.5kw/10hp

8bar

1.1m3/min

G1/2

900mm

900mm

850mm

120KG

The above price is a range of prices, not the final price of air compressor, in addition to air compressors, we also produce and sell air dryer, air tank, air filter and spare parts, welcome to contact us for detailed prices and products parameter!

 

FAQ

Q1: Why customer choose us?O: We are a professional manufacturer for air compressor and after treatment equipment. We have more
than 15 years experience in producing and exporting air compressor, air dryer and air filter.

Q2: Are you a manufacturer or trading company?
O: Our factory is located in ZheJiang China, we have research and develop center, advanced processing equipment, professional
technicians, rich experience workers and after-sales team to offer good quality products and good service to our customers. We
also can provide you the OEM&ODM service.

Q3: What’s your delivery time?
O: Generally 10 days, if urgently order, pls contact our sales in advance

Q4: How long is your air compressor warranty?
O: One year for the whole machine when the compressor leave our factory.

Q5: How long could your air compressor be used?
O: Generally, more than 10 years

Q6: What’s payment term?
O: T/T, L/C, Paypal and etc. Also we could accept USD, RMB, Euro and other currency (Pls contact our sales for more information

Q7: How about your customer service?
O: 24 hours on-line service available

Q8: How about your after-sales service?

O: 1. Provide customers with installation and commissioning online instructions.
2. Well-trained engineers available to overseas service
3. World wide agents and after service available

 

Professional You Can Trust Us

—–VERDES Technology Co., Ltd——

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Technical Support
Warranty: 2 Years
Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Horizontal
Samples:
US$ 2000/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What are the advantages of using an air compressor in construction?

Using an air compressor in construction offers numerous advantages that contribute to increased efficiency, productivity, and versatility. Here are some key benefits of using air compressors in construction:

  • Powering Pneumatic Tools: Air compressors are commonly used to power a wide range of pneumatic tools on construction sites. Tools such as jackhammers, nail guns, impact wrenches, drills, and sanders can be operated using compressed air. Pneumatic tools are often preferred due to their lightweight, compact design and ability to deliver high torque or impact force.
  • Efficient Operation: Air compressors provide a continuous and reliable source of power for pneumatic tools, allowing for uninterrupted operation without the need for frequent battery changes or recharging. This helps to maintain a smooth workflow and reduces downtime.
  • Portability: Many construction air compressors are designed to be portable, featuring wheels or handles for easy maneuverability on job sites. Portable air compressors can be transported to different areas of the construction site as needed, providing power wherever it is required.
  • Versatility: Air compressors are versatile tools that can be used for various applications in construction. Apart from powering pneumatic tools, they can also be utilized for tasks such as inflating tires, cleaning debris, operating air-operated pumps, and powering air horns.
  • Increased Productivity: The efficient operation and power output of air compressors enable construction workers to complete tasks more quickly and effectively. Pneumatic tools powered by air compressors often offer higher performance and faster operation compared to their electric or manual counterparts.
  • Cost Savings: Air compressors can contribute to cost savings in construction projects. Pneumatic tools powered by air compressors are generally more durable and have longer lifespans compared to electric tools. Additionally, since air compressors use compressed air as their power source, they do not require the purchase or disposal of batteries or fuel, reducing ongoing operational expenses.
  • Reduced Electrocution Risk: Construction sites can be hazardous environments, with the risk of electrocution from electrical tools or equipment. By utilizing air compressors and pneumatic tools, the reliance on electrical power is minimized, reducing the risk of electrocution accidents.

It is important to select the appropriate air compressor for construction applications based on factors such as required air pressure, volume, portability, and durability. Regular maintenance, including proper lubrication and cleaning, is crucial to ensure the optimal performance and longevity of air compressors in construction settings.

In summary, the advantages of using air compressors in construction include powering pneumatic tools, efficient operation, portability, versatility, increased productivity, cost savings, and reduced electrocution risk, making them valuable assets on construction sites.

air compressor

How does the horsepower of an air compressor affect its capabilities?

The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:

Power Output:

The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.

Air Pressure:

The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.

Air Volume:

In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.

Duty Cycle:

The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.

Size and Portability:

It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.

When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.

Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.

air compressor

What are the key components of an air compressor system?

An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:

1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.

2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.

3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.

4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.

5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.

6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.

7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.

8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.

9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.

10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.

These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.

China supplier Electric Silent 7bar 7.5kw Screw Air Compressor with CE   air compressor priceChina supplier Electric Silent 7bar 7.5kw Screw Air Compressor with CE   air compressor price
editor by CX 2024-02-02

China Hot selling Screw Air Compressor Direct Driven 75kw 100HP Inverter Compressor 415V50Hz air compressor price

Product Description

Product Description

Our company provides you with a full set of industrial gas solutions, including screw air compressor, piston air compressor, permanent magnet inverter air compressor, special air compressor for blowing bottles, special air compressor for laser cutting and a full set of post-treatment system.Professional solution to all your gas needs, high equipment reliability, remarkable energy saving effect.

Details Images

Screw compressor technical parameters
Model ALB-25HP ALB-30HP ALB-40HP ALB-50HP ALB-60HP

Free Air Delivery/ Discharge Pressure

M³/Min/MPa 3.1/0.7 3.8/0.7 5.2/0.7 6.8/0.7 7.8/0.7
2.9/0.8 3.6/0.8 5.0/0.8 6.2/0.8 7.3/0.8
2.7/1.0 3.2/1.0 4.3/1.0 5.6/1.0 7.0/1.0
2.2/1.3 2.9/1.3 3.7/1.3 4.8/1.3 5.8/1.3
Compressed series single stage
Environmental temperature -5ºC-+45ºC
Cooling mode Air-Cooled
Discharge Temperature ºC 55ºC
LubricantL L 18 30
Noise dB(A) ≤72
Drive method Direct drive
Power supply V/PH/HZ 380V/50HZ
power KW 18.5 22 30 37 45
Starting type Frequency conversion
Dimensions
(mm)
Length 1380 1500
Width 850 1000
Height 1160 1320
Weight KG 460 470 480 760 780
Air Outlet Pipe Diameter imch/mm R1 “ R1 1/2″

Company Profile
HangZhou CHINAMFG Drilling Equipment Co., Ltd. mainly provides holistic drilling solutions, serving the mining, stone crushing, water conservancy drilling industry, to help you solve the problem of drilling at high efficiency and low cost. We mainly provide mobile air compressors, drilling rigs, hammer, drill bit, crushers, underground water detector.We are your trustworthy partner.

FAQ
1.Is it difficult to operate and make the graph?
The instrument is easy to operate and we will send you the detailed operation manual via email.
The detector directly mapping with 1 button, no need computer drawing mapping.

2.What is the accuracy?
Our natural electric field instruments have been made for more than 10 years, with advanced technology and market test. We have obtained many invention patents. Our customer feedback rate reaches 100%. Accuracy over 95%.
3.How about after-sales service?
2 year warranty.Free data service for life.The professional geologist give the suggestions and 24hours online.

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Lubrication Style: Oil-free
Cooling System: Air Cooling
Power Source: AC Power
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

How are air compressors used in the food and beverage industry?

Air compressors play a vital role in the food and beverage industry, providing a reliable source of compressed air for various applications. Here are some common uses of air compressors in this industry:

1. Packaging and Filling:

Air compressors are extensively used in packaging and filling operations in the food and beverage industry. Compressed air is utilized to power pneumatic systems that control the movement and operation of packaging machinery, such as filling machines, capping machines, labeling equipment, and sealing devices. The precise and controlled delivery of compressed air ensures accurate and efficient packaging of products.

2. Cleaning and Sanitization:

Air compressors are employed for cleaning and sanitization purposes in food and beverage processing facilities. Compressed air is used to operate air-powered cleaning equipment, such as air blowguns, air-operated vacuum systems, and air knives. It helps remove debris, dust, and contaminants from production lines, equipment, and hard-to-reach areas. Additionally, compressed air is used for drying surfaces after cleaning and for applying sanitizing agents.

3. Cooling and Refrigeration:

In the food and beverage industry, air compressors are utilized in cooling and refrigeration systems. Compressed air is used to drive air compressors in refrigeration units, enabling the circulation of refrigerants and maintaining optimal temperatures for food storage and preservation. The controlled airflow provided by the compressors facilitates efficient cooling and refrigeration processes.

4. Aeration and Mixing:

Air compressors are used for aeration and mixing applications in the food and beverage industry. Compressed air is introduced into processes such as fermentation, dough mixing, and wastewater treatment. It helps in promoting oxygen transfer, enhancing microbial activity, and facilitating proper mixing of ingredients or substances, contributing to the desired quality and consistency of food and beverage products.

5. Pneumatic Conveying:

In food processing plants, air compressors are employed for pneumatic conveying systems. Compressed air is used to transport bulk materials such as grains, powders, and ingredients through pipes or tubes. It enables the gentle and efficient movement of materials without the need for mechanical conveyors, reducing the risk of product damage or contamination.

6. Quality Control and Testing:

Air compressors are utilized in quality control and testing processes within the food and beverage industry. Compressed air is used for leak testing of packaging materials, containers, and seals to ensure product integrity. It is also employed for spraying air or gases during sensory analysis and flavor testing.

7. Air Agitation:

In certain food and beverage production processes, air compressors are used for air agitation. Compressed air is introduced into tanks, mixing vessels, or fermentation tanks to create turbulence and promote mixing or chemical reactions. It aids in achieving consistent product quality and uniform distribution of ingredients or additives.

It is important to note that air compressors used in the food and beverage industry must meet strict hygiene and safety standards. They may require specific filtration systems, oil-free operation, and compliance with food safety regulations to prevent contamination or product spoilage.

By utilizing air compressors effectively, the food and beverage industry can benefit from improved productivity, enhanced product quality, and efficient processing operations.

air compressor

How are air compressors used in refrigeration and HVAC systems?

Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:

1. Refrigerant Compression:

In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.

2. Refrigeration Cycle:

The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.

3. HVAC Cooling and Heating:

In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.

4. Air Conditioning:

Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.

5. Compressor Types:

Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.

6. Energy Efficiency:

Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.

By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.

air compressor

What are the safety considerations when operating an air compressor?

Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:

1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.

2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.

3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.

4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.

5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.

6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.

7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.

8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.

9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.

10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.

By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.

China Hot selling Screw Air Compressor Direct Driven 75kw 100HP Inverter Compressor 415V50Hz   air compressor priceChina Hot selling Screw Air Compressor Direct Driven 75kw 100HP Inverter Compressor 415V50Hz   air compressor price
editor by CX 2024-02-02

China Custom Low Pressure Two Stage Compression Permanent Magnet Inverter Screw Air Compressor Wholesale Factory Price 380V, 400V, 440V, portable air compressor

Product Description

Product Parameters

Model Motor Power Maximum Working Pressure Free Air Delivery Air Outlet Pipe Diameter Weight Dimensions(L*W*H)
kW hp bar(g) psig m³/min cfm kg mm
BG50APMII 37 50 4 58 10.3  364 G2″ 1600 2100*1300*1650
5 73 9.5  335
BG60APMII 45 60 4 58 12.2  431 G2″ 1650 2100*1300*1650
5 73 11.5  406
BG75APMII 55 75 4 58 15.5  547 G2″ 1700 2100*1300*1650
5 73 14.5  512
BG100APMII 75 100 4 58 19.5  689 DN80 2700 2500*1650*1900
5 73 19.0  671
BG125APMII 90 125 4 58 24.5  865 DN80 2800 2500*1650*1900
5 73 23.0  812
BG150APMII 110 150 4 58 28.0  989 DN80 2900 2500*1650*1900
5 73 27.5  971
BG180APMII 132 180 4 58 36.0  1271 DN100 3100 3000*1900*1950
5 73 34.0  1201
BG220APMII 160 220 4 58 46.0  1624 DN100 4400 3000*1900*1950
5 73 42.0  1483
BG250APMII 185 250 4 58 52.0  1836 DN125 5500 3600*2200*2200
5 73 45.0  1589
BG270APMII 200 270 4 58 57.0  2013 DN125 6000 3600*2200*2200
5 73 51.5  1819
BG300APMII 220 300 4 58 62.0  2190 DN150 6800 4000*2300*2300
5 73 55.0  1942
BG340APMII 250 340 4 58 65.0  2295 DN150 7500 4000*2300*2300
5 73 61.0  2154

Wallboge is a high-tech enterprise and is considered 1 of the leading manufacturers of air compressor products in China. Our goal is to provide exceptional customer service coupled with quality products and energy saving solutions.

Wallboge’ s primary businesses focus in following key areas:

Integrated screw air compressor for laser cutting
Permanent magnet variable frequency screw air compressor
Two-stage compression permanent magnet variable frequency screw air compressor
Low pressure two-stage compression permanent magnet variable frequency screw air compressor
Low pressure permanent magnet variable frequency screw air compressor
Water-lubricated oil-free screw air compressor
Fixed speed screw air compressor
Oil-free screw blower
Screw vacuum pump

At Wallboge, we earn our customers’ trust and satisfaction by manufacturing the superior quality compressed air products for all industries. All of our products are designed for reliable performance, easy maintenance, and maximum energy efficiency. CHINAMFG has been exporting to more than 150 countries across the globe. 

Wallboge continuously innovates product development and management to meet customers’ demand. The powerful enterprise culture and continuous innovation make CHINAMFG improved rapidly. Wallboge’ s vision is to be a world-renowned high-end energy-saving machinery brand, with sustainable development, constantly improving its own value and sharing it with our customers and staff, committed to continuously satisfying the needs of global companies by providing a full range of industrial air compression solutions.

Certifications

Exhibitions

 

After Sales Service

1. 24/7 after sales service in different languages.
2. Online instruction for installation and commissioning.
3. On-site instruction for installation and commissioning provided by well-trained engineers or local authorized service center.
4. CHINAMFG agents and after sales service available.
 

Our Advantages

1. Proven product quality.
2. Factory direct prices.
3. On-time delivery.
4. Prompt technical support in different languages before sales, in sales and after sales.
5. Small orders accepted to check quality first.
6. OEM & ODM service available.

 

FAQ

Q1: Are you a factory or a trading company? 
A1: We are a factory. Please check our Company Profile.

Q2: What is the exact address of your factory? 
A2: No. 588, East Tonggang Road, Shaxi Town, HangZhou City, ZheJiang Province, China

Q3: What is your delivery time?
A3: For standard voltage, the delivery time is 15 working days after you confirm the order. For non-standard voltage, please contact our sales to confirm the delivery time.

Q4: What kind of payment terms do you accept?
A4: We accept T/T, L/C at sight.

Q5: How long is the warranty of your air compressor?
A5: 2 years for the whole air compressor except consumable spare parts.

Q6: How long could your air compressor be used?
A6: Generally, more than 10 years.

Q7: What is your MOQ requirement?
A7: 1 unit.

Q8: Can you offer OEM & ODM service?
A8: Yes, with a professional design team, we can offer OEM & ODM service.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Engineers Available to Overseas Service.
Warranty: 2 Years
Lubrication Style: Lubricated
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

Can air compressors be used for gas compression and storage?

Yes, air compressors can be used for gas compression and storage. While air compressors are commonly used to compress and store air, they can also be utilized for compressing and storing other gases, depending on the specific application requirements. Here’s how air compressors can be used for gas compression and storage:

Gas Compression:

Air compressors can compress various gases by utilizing the same principles applied to compressing air. The compressor takes in the gas at a certain pressure, and through the compression process, it increases the pressure and reduces the volume of the gas. This compressed gas can then be used for different purposes, such as in industrial processes, gas pipelines, or storage systems.

Gas Storage:

Air compressors can also be used for gas storage by compressing the gas into storage vessels or tanks. The compressed gas is stored at high pressure within these vessels until it is needed for use. Gas storage is commonly employed in industries where a continuous and reliable supply of gas is required, such as in natural gas storage facilities or for storing compressed natural gas (CNG) used as a fuel for vehicles.

Gas Types:

While air compressors are primarily designed for compressing air, they can be adapted to handle various gases, including but not limited to:

  • Nitrogen
  • Oxygen
  • Hydrogen
  • Carbon dioxide
  • Natural gas
  • Refrigerant gases

It’s important to note that when using air compressors for gas compression and storage, certain considerations must be taken into account. These include compatibility of the compressor materials with the specific gas being compressed, ensuring proper sealing to prevent gas leaks, and adhering to safety regulations and guidelines for handling and storing compressed gases.

By leveraging the capabilities of air compressors, it is possible to compress and store gases efficiently, providing a reliable supply for various industrial, commercial, and residential applications.

air compressor

Can air compressors be used for medical and dental applications?

Yes, air compressors can be used for various medical and dental applications. Compressed air is a reliable and versatile utility in healthcare settings, providing power for numerous devices and procedures. Here are some common applications of air compressors in medical and dental fields:

1. Dental Tools:

Air compressors power a wide range of dental tools and equipment, such as dental handpieces, air syringes, air scalers, and air abrasion devices. These tools rely on compressed air to generate the necessary force and airflow for effective dental procedures.

2. Medical Devices:

Compressed air is used in various medical devices and equipment. For example, ventilators and anesthesia machines utilize compressed air to deliver oxygen and other gases to patients. Nebulizers, used for respiratory treatments, also rely on compressed air to convert liquid medications into a fine mist for inhalation.

3. Laboratory Applications:

Air compressors are used in medical and dental laboratories for various purposes. They power laboratory instruments, such as air-driven centrifuges and sample preparation equipment. Compressed air is also used for pneumatic controls and automation systems in lab equipment.

4. Surgical Tools:

In surgical settings, compressed air is employed to power specialized surgical tools. High-speed air-driven surgical drills, saws, and bone-cutting instruments are commonly used in orthopedic and maxillofacial procedures. Compressed air ensures precise control and efficiency during surgical interventions.

5. Sterilization and Autoclaves:

Compressed air is essential for operating sterilization equipment and autoclaves. Autoclaves use steam generated by compressed air to sterilize medical instruments, equipment, and supplies. The pressurized steam provides effective disinfection and ensures compliance with rigorous hygiene standards.

6. Dental Air Compressors:

Specialized dental air compressors are designed specifically for dental applications. These compressors have features such as moisture separators, filters, and noise reduction mechanisms to meet the specific requirements of dental practices.

7. Air Quality Standards:

In medical and dental applications, maintaining air quality is crucial. Compressed air used in healthcare settings must meet specific purity standards. This often requires the use of air treatment systems, such as filters, dryers, and condensate management, to ensure the removal of contaminants and moisture.

8. Compliance and Regulations:

Medical and dental facilities must comply with applicable regulations and guidelines regarding the use of compressed air. These regulations may include requirements for air quality, maintenance and testing procedures, and documentation of system performance.

It is important to note that medical and dental applications have specific requirements and standards. Therefore, it is essential to choose air compressors and associated equipment that meet the necessary specifications and comply with industry regulations.

air compressor

Can you explain the basics of air compressor terminology?

Understanding the basic terminology related to air compressors can help in better comprehension of their operation and discussions related to them. Here are some essential terms related to air compressors:

1. CFM (Cubic Feet per Minute): CFM is a unit of measurement that denotes the volumetric flow rate of compressed air. It indicates the amount of air a compressor can deliver within a minute and is a crucial factor in determining the compressor’s capacity.

2. PSI (Pounds per Square Inch): PSI is a unit of measurement used to quantify pressure. It represents the force exerted by the compressed air on a specific area. PSI is a vital specification for understanding the pressure capabilities of an air compressor and determining its suitability for various applications.

3. Duty Cycle: Duty cycle refers to the percentage of time an air compressor can operate in a given time period. It indicates the compressor’s ability to handle continuous operation without overheating or experiencing performance issues. For instance, a compressor with a 50% duty cycle can run for half the time in a given hour or cycle.

4. Horsepower (HP): Horsepower is a unit used to measure the power output of a compressor motor. It indicates the motor’s capacity to drive the compressor pump and is often used as a reference for comparing different compressor models.

5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air delivered by the compressor. It helps in stabilizing pressure fluctuations, allowing for a more consistent supply of compressed air during peak demand periods.

6. Single-Stage vs. Two-Stage: These terms refer to the number of compression stages in a reciprocating air compressor. In a single-stage compressor, air is compressed in a single stroke of the piston, while in a two-stage compressor, it undergoes initial compression in one stage and further compression in a second stage, resulting in higher pressures.

7. Oil-Free vs. Oil-Lubricated: These terms describe the lubrication method used in air compressors. Oil-free compressors have internal components that do not require oil lubrication, making them suitable for applications where oil contamination is a concern. Oil-lubricated compressors use oil for lubrication, enhancing durability and performance but requiring regular oil changes and maintenance.

8. Pressure Switch: A pressure switch is an electrical component that automatically starts and stops the compressor motor based on the pre-set pressure levels. It helps maintain the desired pressure range in the receiver tank and protects the compressor from over-pressurization.

9. Regulator: A regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications and ensures a consistent and safe supply of compressed air.

These are some of the fundamental terms associated with air compressors. Familiarizing yourself with these terms will aid in understanding and effectively communicating about air compressors and their functionality.

China Custom Low Pressure Two Stage Compression Permanent Magnet Inverter Screw Air Compressor Wholesale Factory Price 380V, 400V, 440V,   portable air compressorChina Custom Low Pressure Two Stage Compression Permanent Magnet Inverter Screw Air Compressor Wholesale Factory Price 380V, 400V, 440V,   portable air compressor
editor by CX 2024-01-31

China OEM 96722924 Hose for Air Compressor of 6120k CHINAMFG Bus air compressor price

Product Description

HangZhou HengJin Trading Co., Ltd was built in year 2000,which specialized in DEAWOO BUS PARTS,DOOSAN ENGINE PARTS. With 20 years effort, We have built long term business relationship with most of the OEM factories.To make sure on time delivery,we also have rich stock,such as body parts,engine parts,chassis parts, all kinds of whole parts.Quick delivery, High quality with competitive price get more and more customer approvals. Our products are exported to Africa, Middle East, central Asia, southeast Asia, Europe,Russia and other countries and regions. If our feild just fall your business field, no hesitate to contact with us, you will get reply at the first time. Through our mutual effort to built more bright future.Contact Us
China Office Hours:   
From Monday To Friday 8:30 AM — 17:30 PM  8.30-17.30
HangZhou CHINAMFG Trading Co., Ltd. 
No. 2666, CHINAMFG East Road, Wanpin Autopart Market, HangZhou, ZHangZhoug, China
 
 
 
 
 hzhjmy
   http://hzhjmy
 Connect Person: Ms. CHINAMFG Chen ( Sales Manager ) 
Business Range:
Auto, Motorcycle Parts & Accessories,Industrial Equipment & Components,Service
Product Keyword(s):
Daewoo Bus Parts, CHINAMFG Engine Parts, Aktas Air Spring /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Yes
Warranty: Yes
Classification: Variable Capacity
Transmission Power: Internal-combustion Engine
Cooling Method: Water-cooled
Condition: New
Customization:
Available

|

air compressor

What are the differences between stationary and portable air compressors?

Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:

1. Mobility:

The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.

2. Power Source:

Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.

3. Tank Capacity:

Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.

4. Performance and Output:

The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.

5. Noise Level:

Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.

6. Price and Cost:

Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.

When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.

air compressor

How do you choose the right air compressor for woodworking?

Choosing the right air compressor for woodworking is essential to ensure efficient and effective operation of pneumatic tools and equipment. Here are some factors to consider when selecting an air compressor for woodworking:

1. Required Air Volume (CFM):

Determine the required air volume or cubic feet per minute (CFM) for your woodworking tools and equipment. Different tools have varying CFM requirements, so it is crucial to choose an air compressor that can deliver the required CFM to power your tools effectively. Make sure to consider the highest CFM requirement among the tools you’ll be using simultaneously.

2. Tank Size:

Consider the tank size of the air compressor. A larger tank allows for more stored air, which can be beneficial when using tools that require short bursts of high air volume. It helps maintain a consistent air supply and reduces the frequency of the compressor cycling on and off. However, if you have tools with continuous high CFM demands, a larger tank may not be as critical.

3. Maximum Pressure (PSI):

Check the maximum pressure (PSI) rating of the air compressor. Woodworking tools typically operate within a specific PSI range, so ensure that the compressor can provide the required pressure. It is advisable to choose an air compressor with a higher maximum PSI rating to accommodate any future tool upgrades or changes in your woodworking needs.

4. Noise Level:

Consider the noise level of the air compressor, especially if you’ll be using it in a residential or shared workspace. Some air compressors have noise-reducing features or are designed to operate quietly, making them more suitable for woodworking environments where noise control is important.

5. Portability:

Assess the portability requirements of your woodworking projects. If you need to move the air compressor frequently or work in different locations, a portable and lightweight compressor may be preferable. However, if the compressor will remain stationary in a workshop, a larger, stationary model might be more suitable.

6. Power Source:

Determine the power source available in your woodworking workspace. Air compressors can be powered by electricity or gasoline engines. If electricity is readily available, an electric compressor may be more convenient and cost-effective. Gasoline-powered compressors offer greater flexibility for remote or outdoor woodworking projects where electricity may not be accessible.

7. Quality and Reliability:

Choose an air compressor from a reputable manufacturer known for producing reliable and high-quality equipment. Read customer reviews and consider the warranty and after-sales support offered by the manufacturer to ensure long-term satisfaction and reliability.

8. Budget:

Consider your budget and balance it with the features and specifications required for your woodworking needs. While it’s important to invest in a reliable and suitable air compressor, there are options available at various price points to accommodate different budgets.

By considering these factors and evaluating your specific woodworking requirements, you can choose an air compressor that meets the demands of your tools, provides efficient performance, and enhances your woodworking experience.

air compressor

What are the key components of an air compressor system?

An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:

1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.

2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.

3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.

4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.

5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.

6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.

7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.

8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.

9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.

10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.

These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.

China OEM 96722924 Hose for Air Compressor of 6120k CHINAMFG Bus   air compressor priceChina OEM 96722924 Hose for Air Compressor of 6120k CHINAMFG Bus   air compressor price
editor by CX 2024-01-22

China manufacturer Belt Driven Rotary/Screw Air Compressor (SCR7.5M Series) air compressor price

Product Description

Product Technical Description
 

Model :  Oil Injected Screw Air Compressor Belt Driven (M series)
Type:  Oil Injected Belt Driven Screw Air Compressor
Voltage:  380V/50HZ/3P, 220V/60HZ/3P, 400V/50HZ/3P, 415V/50HZ/3P or Customer′s Requirements
Working Pressure:  7~12.5 bar
Installed Motor Power:  4KW~75KW
Capacity: 0.58~13.3m3/min
Color:  Blue
Driven Method: Belt Driven
Air End: Original Ally-win Air End from Germany
Trademark:  SCR
Transport Package:  Standard Wooden Packing
Available Certificate:  CE, ISO, UL, ASME, GHOST
Origin:  ZheJiang , China
application:  Casting , Metal , Plastic , Rubber

Product Features

1. Sino-Japan technology cooperation, high reliability.

2. Big airend with low rpm for better performance an long life span.

3. High reliability components imported original from Germany, Swiss etc.

4. CE level protection design and manufacturing

5. Oversize cooler suitable for tropical area.

6. More than 10,000.00 units running around the world since 10years ago.

7. Intelligent PLC control.

8. Easy to do maintenance and service.

1.Automatic interlock control and operations management

Intelligent microcomputer controller, combined with pressure, temperature, current, signal, alarm with 12 important indicators and 13 comprehensive security protection measures with Chinese and English display optional and maintenance time limit remind. The RS485 communication interface can realize several machines joint control. Concise and comprehensive to keep the customer informed of the machines’ situation in time.

2.Safe and zero leakage connection

SCR have abandoned the traditional low cost hydraulic hose design. CHINAMFG use High-rigid pipes and flexible joint connection, avoiding bursts typically caused by ageing . Fluorine rubber type 0-ring offers a flexible seal preventing leakage.

3.heavy duty air filter with prefilter

A European imported air filter offers High efficiency and a low pressure drop.

4.CHINAMFG brand electrical components

5.American brand high efficiency transmission system


 

Model SCR7.5M-8 SCR7.5M-10 SCR7.5M-12.5
Capacity/Pressure(m3/min,/BAR) 0.81/8 0.72/10 0.63/12.5
TEFC Motor Power(KW) 5.5KW(7.5H.P)
Speed(r/min) 2890
Starting way Star-Delta
Volt(V) 380/400/415(220)
Motor safety grade IP54
Motor isolation grade F
Electrical Supply 380(400,415)V/50Hz/3Phase, 220V/60HZ/3P
Outlet Temperature(ºC) ≤ Environment Temperature+10ºC
Driven way Belt Driven
Noise level at 1 meter 68±3dB(A)
Cooling method Air cooling
Oil content ≤3 ppm
Outlet Connection Rc 1/2″
Dimension Length(mm) 900
Width(mm) 680
Height(mm) 970
Weight(KG) 230

Product Categories

Advantages

Application

About SCR


 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Performance: Low Noise
Drive Mode: Electric
Configuration: Stationary
Application: Air Power
High Quality: Good Performance
Save Energy: Environment-Friendly
Customization:
Available

|

air compressor

How are air compressors employed in the petrochemical industry?

Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:

1. Instrumentation and Control Systems:

Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.

2. Pneumatic Tools and Equipment:

Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.

3. Process Air and Gas Supply:

Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.

4. Cooling and Ventilation:

Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.

5. Nitrogen Generation:

Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.

6. Instrument Air:

Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.

By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.

air compressor

Are there differences between single-stage and two-stage air compressors?

Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:

Compression Stages:

The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.

Compression Process:

In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.

Pressure Output:

The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.

Efficiency:

Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.

Intercooling:

Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.

Applications:

The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.

It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.

In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.

air compressor

How does an air compressor work?

An air compressor works by using mechanical energy to compress and pressurize air, which is then stored and used for various applications. Here’s a detailed explanation of how an air compressor operates:

1. Air Intake: The air compressor draws in ambient air through an intake valve or filter. The air may pass through a series of filters to remove contaminants such as dust, dirt, and moisture, ensuring the compressed air is clean and suitable for its intended use.

2. Compression: The intake air enters a compression chamber, typically consisting of one or more pistons or a rotating screw mechanism. As the piston moves or the screw rotates, the volume of the compression chamber decreases, causing the air to be compressed. This compression process increases the pressure and reduces the volume of the air.

3. Pressure Build-Up: The compressed air is discharged into a storage tank or receiver where it is held at a high pressure. The tank allows the compressed air to be stored for later use and helps to maintain a consistent supply of compressed air, even during periods of high demand.

4. Pressure Regulation: Air compressors often have a pressure regulator that controls the output pressure of the compressed air. This allows the user to adjust the pressure according to the requirements of the specific application. The pressure regulator ensures that the compressed air is delivered at the desired pressure level.

5. Release and Use: When compressed air is needed, it is released from the storage tank or receiver through an outlet valve or connection. The compressed air can then be directed to the desired application, such as pneumatic tools, air-operated machinery, or other pneumatic systems.

6. Continued Operation: The air compressor continues to operate as long as there is a demand for compressed air. When the pressure in the storage tank drops below a certain level, the compressor automatically starts again to replenish the compressed air supply.

Additionally, air compressors may include various components such as pressure gauges, safety valves, lubrication systems, and cooling mechanisms to ensure efficient and reliable operation.

In summary, an air compressor works by drawing in air, compressing it to increase its pressure, storing the compressed air, regulating the output pressure, and releasing it for use in various applications. This process allows for the generation of a continuous supply of compressed air for a wide range of industrial, commercial, and personal uses.

China manufacturer Belt Driven Rotary/Screw Air Compressor (SCR7.5M Series)   air compressor priceChina manufacturer Belt Driven Rotary/Screw Air Compressor (SCR7.5M Series)   air compressor price
editor by CX 2024-01-22